Câu hỏi:

19/08/2025 2,994 Lưu

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = \frac{{\left( {n + 2} \right){u_n} + 2}}{n};\,\,\forall n \in \mathbb{N}*}\end{array}} \right.\). Tính giới hạn lim \(\frac{{{u_n}}}{{{n^2}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({u_{n + 1}} = \frac{{\left( {n + 2} \right){u_n} + 2}}{n} \Leftrightarrow n{u_{n + 1}} = \left( {n + 2} \right){u_n} + 2\,\,\forall n \in \mathbb{N}*\).

Đặt \({u_n} = {v_n} - 1,\,\,\forall n \in \mathbb{N}*\) thì \({v_1} = 1 + 1 = 2\) và \(n{u_{n + 1}} = \left( {n + 2} \right){u_n} + 2\).

Do đó \(n{v_{n + 1}} = \left( {n + 2} \right){v_n} \Leftrightarrow \frac{{{v_{n + 1}}}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{{{v_n}}}{{n\left( {n + 1} \right)}} \Rightarrow \frac{{{v_1}}}{2} = 1\)

\( \Rightarrow {v_n} = n\left( {n + 1} \right) \Rightarrow {u_n} = n\left( {n + 1} \right) - 1 = {n^2} + n - 1\).

Vậy \(\lim \frac{{{u_n}}}{{{n^2}}} = \lim \frac{{{n^2} + n - 1}}{{{n^2}}} = 1\).

Đáp án: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)

Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).

Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).

Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).

Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).

Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.

Dễ thấy \(x =  - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.

Lời giải

Từ đồ thị ta có:

• TCĐ: \(x = 1 \Rightarrow \frac{{ - d}}{{{c_a}}} = 1 \Rightarrow \frac{d}{c} =  - 1 \Rightarrow d =  - c\);

• TCN: \(y =  - 1 \Rightarrow \frac{a}{c} =  - 1 \Rightarrow a =  - c\).

Đồ thị cắt trục hoành tại điểm: \(x = 2 \Rightarrow \frac{{ - b}}{a} = 2 \Rightarrow \frac{{ - b}}{{ - c}} = 2 \Rightarrow b = 2c\)

Vậy \(T = \frac{{a - 2b + 3d}}{c} = \frac{{ - c - 4c - 3c}}{c} =  - 8\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP