Câu hỏi:
20/06/2024 51Cho hình nón \({N_1}\) đỉnh \(S\) đáy là đường tròn \(C\left( {O;\,\,R} \right)\), đường cao \(SO = 40\). Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ \({N_2}\) có đỉnh \(S\) và đáy là đường tròn \(C'\left( {O';\,\,R'} \right).\) Biết tỉ số thể tích \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{1}{8}.\) Độ dài đường cao nón \({N_2}\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \({V_{{N_1}}} = \frac{1}{3}\pi {R^2} \cdot SO,\,\,{V_{{N_2}}} = \frac{1}{3}\pi {R^2} \cdot SO'\)
Mặt khác, \(\Delta SO'A\) và \(\Delta SOB\) đồng dạng nên \(\frac{{R'}}{R} = \frac{{SO'}}{{SO}}\).
Suy ra: \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{{{{R'}^2} \cdot SO'}}{{{R^2} \cdot SO}} = {\left( {\frac{{SO'}}{{SO}}} \right)^3} = \frac{1}{8}\).
Do đó \(\frac{{SO'}}{{SO}} = \frac{1}{2} \Rightarrow SO' = \frac{1}{2} \cdot 40 = 20\;\,({\rm{cm)}}.\)
Đáp án: 20.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!