Cho hình nón \({N_1}\) đỉnh \(S\) đáy là đường tròn \(C\left( {O;\,\,R} \right)\), đường cao \(SO = 40\). Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ \({N_2}\) có đỉnh \(S\) và đáy là đường tròn \(C'\left( {O';\,\,R'} \right).\) Biết tỉ số thể tích \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{1}{8}.\) Độ dài đường cao nón \({N_2}\) là
Cho hình nón \({N_1}\) đỉnh \(S\) đáy là đường tròn \(C\left( {O;\,\,R} \right)\), đường cao \(SO = 40\). Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ \({N_2}\) có đỉnh \(S\) và đáy là đường tròn \(C'\left( {O';\,\,R'} \right).\) Biết tỉ số thể tích \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{1}{8}.\) Độ dài đường cao nón \({N_2}\) là
Quảng cáo
Trả lời:

Ta có: \({V_{{N_1}}} = \frac{1}{3}\pi {R^2} \cdot SO,\,\,{V_{{N_2}}} = \frac{1}{3}\pi {R^2} \cdot SO'\)
Mặt khác, \(\Delta SO'A\) và \(\Delta SOB\) đồng dạng nên \(\frac{{R'}}{R} = \frac{{SO'}}{{SO}}\).
Suy ra: \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{{{{R'}^2} \cdot SO'}}{{{R^2} \cdot SO}} = {\left( {\frac{{SO'}}{{SO}}} \right)^3} = \frac{1}{8}\).
Do đó \(\frac{{SO'}}{{SO}} = \frac{1}{2} \Rightarrow SO' = \frac{1}{2} \cdot 40 = 20\;\,({\rm{cm)}}.\)
Đáp án: 20.- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)
Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).
Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).
Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).
Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).
Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.
Dễ thấy \(x = - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.
Lời giải
Từ đồ thị ta có:
• TCĐ: \(x = 1 \Rightarrow \frac{{ - d}}{{{c_a}}} = 1 \Rightarrow \frac{d}{c} = - 1 \Rightarrow d = - c\);
• TCN: \(y = - 1 \Rightarrow \frac{a}{c} = - 1 \Rightarrow a = - c\).
Đồ thị cắt trục hoành tại điểm: \(x = 2 \Rightarrow \frac{{ - b}}{a} = 2 \Rightarrow \frac{{ - b}}{{ - c}} = 2 \Rightarrow b = 2c\)
Vậy \(T = \frac{{a - 2b + 3d}}{c} = \frac{{ - c - 4c - 3c}}{c} = - 8\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.