Câu hỏi:
11/07/2024 74Cho \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) là số phức thỏa mãn môđun \(z\) nhỏ nhất và \(\left| {z - 1 - 2i} \right| + \left| {z + 2 - 3i} \right| = \sqrt {10} .\) Tính \(S = 7a + b.\)
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Gọi \(M\left( {a;\,\,b} \right)\) là điểm biểu diễn số phức \(z = a + bi\)
\(A\left( {1;\,\,2} \right)\) là điểm biểu diễn số phức \(1 + 2i\)
\(B\left( { - 2;\,\,3} \right)\) là điểm biểu diễn số phức \( - 2 + 3i\,;\,\,AB = \sqrt {10} \)
\(\left| {z - 1 - 2i} \right| + \left| {z + 2 - 3i} \right| = \sqrt {10} \) trở thành \(MA + MB = AB\)
\( \Leftrightarrow M\,,\,\,A\,,\,\,B\) thẳng hàng và M ở giữa \[A\] và \({\rm{B}}.\)Gọi \(H\) là điểm chiếu của \(O\) lên \[AB,\] phương trình \[\left( {AB} \right):x + 3y - 7 = 0\,,\,\,\left( {OH} \right):3x - y = 0\].
Tọa độ điểm \(H\left( {\frac{7}{{10}};\,\,\frac{{21}}{{10}}} \right)\) suy ra \(\overrightarrow {AH} = \left( { - \frac{3}{{10}};\,\,\frac{1}{{10}}} \right),\,\,\overrightarrow {BH} \left( {\frac{{27}}{{10}};\,\,\frac{9}{{10}}} \right)\) và \(\overrightarrow {BH} = - 9\overrightarrow {AH} \) nên\(H \in AB.\) Mà \(z\) nhỏ nhất nên \(OM\) nhỏ nhất. Mặt khác, \(M\) thuộc đoạn \[AB\] nên \(M \equiv H\left( {\frac{7}{{10}};\,\,\frac{{21}}{{10}}} \right)\).
Lúc đó \(S = 7a + b = \frac{{49}}{{10}} + \frac{{21}}{{10}} = 7.\) Đáp án: 7.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 3:
Câu 4:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 5:
Câu 6:
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!