Câu hỏi:
20/06/2024 677
Trong không gian \[Oxyz,\] cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = t}\\{z = 2 + 2t}\end{array}\quad (t \in \mathbb{R})} \right.\), \(\Delta :\frac{{x - 3}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 4}}{1}\) và mặt phẳng \((P):x + y - z + 2 = 0.\) Gọi \(d',\,\,\Delta '\) lần lượt là hình chiếu của \(d\,,\,\,\Delta \) lên mặt phẳng \(\left( P \right).\) Gọi \[M\left( {a;\,\,b\,;\,\,c} \right)\] là giao điểm của hai đường thẳng \(d'\) và \(\Delta '.\) Giá trị của tổng \(a + bc\) bằng
Trong không gian \[Oxyz,\] cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = t}\\{z = 2 + 2t}\end{array}\quad (t \in \mathbb{R})} \right.\), \(\Delta :\frac{{x - 3}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 4}}{1}\) và mặt phẳng \((P):x + y - z + 2 = 0.\) Gọi \(d',\,\,\Delta '\) lần lượt là hình chiếu của \(d\,,\,\,\Delta \) lên mặt phẳng \(\left( P \right).\) Gọi \[M\left( {a;\,\,b\,;\,\,c} \right)\] là giao điểm của hai đường thẳng \(d'\) và \(\Delta '.\) Giá trị của tổng \(a + bc\) bằng
Quảng cáo
Trả lời:
Gọi \(\left( Q \right),\,\,\left( R \right)\) lần lượt là hai mặt phẳng chứa \(d\,,\,\,\Delta \) và vuông góc với \(\left( P \right)\).
Khi đó, \(M = \left( P \right) \cap \left( Q \right) \cup \left( R \right)\)
Mặt phẳng \(\left( P \right)\) có VTPT \(\vec n = \left( {1\,;\,\,1\,;\,\, - 1} \right)\)
Đường thẳng \(d\) có VTPT \(\overrightarrow {{u_1}} = \left( {0\,;\,\,1\,;\,\,2} \right)\) và đi qua điểm \(M( - 2;0;2)\)
Mặt phẳng \(\left( Q \right)\) có VTPT \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {{u_1}} \,;\,\,\vec n} \right] = \left( { - 3\,;\,\,2\,;\,\, - 1} \right)\)
\( \Rightarrow \left( Q \right):3\left( {x + 2} \right) - 2\left( {y - 0} \right) + z - 2 = 0 \Leftrightarrow 3x - 2y + z + 4 = 0\)
Đường thẳng \(\Delta \) có VTPT \[\overrightarrow {{u_2}} = \left[ {1\,;\, - 1\,;\, - 1} \right]\] và đi qua điểm \(M(3;1;4)\)
Mặt phẳng \((R)\) có VTPT \(\overrightarrow {{n_2}} = \left[ {\overrightarrow {{u_2}} \,;\,\vec n} \right] = \left( {0\,;\,2\,;\,2} \right)\)
\( \Rightarrow (R):0(x - 3) + 1(y - 1) + 1(z - 4) = 0 \Leftrightarrow y + z - 5 = 0\)
Tọa độ điểm \(M\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + y - z = - 2}\\{3x - 2y + z = - 4}\\{y + z = 5}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 1}\\{y = 2}\\{z = 3}\end{array} \Rightarrow M\left( { - 1\,;\,\,2\,;\,\,3} \right) \Rightarrow a + bc = 5} \right.} \right..\)
Đáp án: 5.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)
Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).
Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).
Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).
Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).
Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.
Dễ thấy \(x = - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.
Lời giải
Vì \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) là trọng tâm của tam giác \[ABC\] suy ra: \(\left\{ {\begin{array}{*{20}{c}}{1 = \frac{{1 + 2 + a}}{3}}\\{c = \frac{{ - 3 - 4 - 2}}{3}}\\{3 = \frac{{3 + 5 + b}}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = 1}\\{c = - 3}\end{array}} \right.} \right.\)
Vậy \(a + b + c = - 2\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.