Câu hỏi:
20/06/2024 53Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \(x + \sqrt {{x^2} + 2020} > x + \left| x \right| \ge 0 \Rightarrow x + \sqrt {{x^2} + 2020} > 0,\,\,\forall x \in \mathbb{R}.\)
Từ giả thiết: \[{2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} \Leftrightarrow f\left( x \right) = {\log _{2020}}\left( {x + \sqrt {{x^2} + 2020} } \right).\]
\({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} \Leftrightarrow f\left( x \right) = {\log _{2020}}\left( {x + \sqrt {{x^2} + 2020} } \right){\rm{. }}\)
Ta có: \(f'\left( x \right) = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 2020} }}}}{{\left( {x + \sqrt {{x^2} + 2020} } \right)\ln 2020}} = \frac{{x + \sqrt {{x^2} + 2020} }}{{\left( {x + \sqrt {{x^2} + 2020} } \right)\ln 2020\sqrt {{x^2} + 2020} }} > 0,\,\,\forall x \in \mathbb{R}\)
Suy ra hàm số \(f(x)\) luôn đồng biến trên \(\mathbb{R}.\)
Mà với \(\left\{ {\begin{array}{*{20}{l}}{m > 0}\\{m \ne 1}\end{array}} \right.\) thì \(f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right) \Leftrightarrow \log m < {\log _m}2020\).
Kết hợp với \(\left\{ {\begin{array}{*{20}{l}}{m > 0}\\{m \ne 1}\end{array}} \right.\) và \(m \in \mathbb{Z}\) nên \(m \in \left\{ {2\,;\,\,3\,;\,\, \ldots \,;\,\,65} \right\}\).
Vậy có tất cả 64 giá trị nguyên \(m\) thỏa mãn yêu cầu bài toán. Đáp án: 64.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!