Câu hỏi:

11/07/2024 77,540

Media VietJack

Cho một mô hình 3D mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài 5cm khi cắt hình này bởi mặt phẳng vuông góc với đáy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parabol cho bởi công thức \(y = 3 - \frac{2}{5}x\,\,({\rm{cm}})\), với \(x\,\,({\rm{cm}})\) là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Thể tích (theo đơn vị \({\rm{c}}{{\rm{m}}^3})\) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có 1 đường tiệm cận ngang là \(y = 0.\)

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng hai đường tiệm cận

\( \Leftrightarrow \) Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng 1 đường tiệm cận đứng

\( \Leftrightarrow \) Phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có một nghiệm kép hoặc phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\Delta  = 0}\\{\left\{ {\begin{array}{*{20}{l}}{\Delta  > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - \frac{{13}}{4}}\\{m = 3}\\{m =  - 1}\end{array}} \right.\).

Vậy có ba giá trị của \(m\) thoả mãn yêu cầu đề bài. Chọn C.

Lời giải

Gọi \(A\) là biến cố: "Ba số tìm được thoả mãn \({a^2} + {b^2} + {c^2}\) chia hết cho 3".

Ta có \(n\left( \Omega  \right) = C_{20}^3 = 1\,\,140\).

Tập hợp các số \[S = \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,20} \right\}\] gồm:

• 6 số chia hết cho 3 là: \[3\,;\,\,6\,;\,\,9\,;\,\,12\,;\,\,15\,;\,\,18.\]

• 14 số còn lại không chia hết cho 3.

Ta thấy số chính phương chia cho 3 hoặc chia hết hoặc dư 1.

Do đó, các trường hợp thuận lợi cho biến cố \(A\) là

− TH1: \({a^2},{b^2},{c^2}\) cùng chia hết cho 3 nên \(a,\,\,b,\,\,c\) cùng chia hết cho 3.

Do đó có \(C_6^3 = 20\) cách chọn \[a,\,\,b,\,\,c.\]

− TH2: \({a^2},\,\,{b^2},\,\,{c^2}\) cùng chia hết cho 3 dư 1 nên \(a,\,\,b,\,\,c\) cùng không chia hết cho 3.

Do đó có \(C_{14}^3 = 364\) cách chọn \[a,\,\,b,\,\,c\] \( \Rightarrow n(A) = 364 + 20 = 384\).

Khi đó xác suất của biến cố \(A\) là: \(P(A) = \frac{{384}}{{1140}} = \frac{{32}}{{95}}\).

Vậy \(m = 32\,;\,\,n = 95 \Rightarrow m + n = 127\). Đáp án: 127.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong thị trường chung châu Âu được tự do lưu thông về 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP