Câu hỏi:
11/07/2024 77,540Quảng cáo
Trả lời:
Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.
Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)
Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a = - \frac{1}{h}\] (do \(h > 0)\)Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)
Suy ra thể tích không gian bên trong của đường hầm mô hình:
\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có 1 đường tiệm cận ngang là \(y = 0.\)
Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng hai đường tiệm cận
\( \Leftrightarrow \) Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng 1 đường tiệm cận đứng
\( \Leftrightarrow \) Phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có một nghiệm kép hoặc phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\Delta = 0}\\{\left\{ {\begin{array}{*{20}{l}}{\Delta > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = - \frac{{13}}{4}}\\{m = 3}\\{m = - 1}\end{array}} \right.\).
Vậy có ba giá trị của \(m\) thoả mãn yêu cầu đề bài. Chọn C.
Lời giải
Gọi \(A\) là biến cố: "Ba số tìm được thoả mãn \({a^2} + {b^2} + {c^2}\) chia hết cho 3".
Ta có \(n\left( \Omega \right) = C_{20}^3 = 1\,\,140\).
Tập hợp các số \[S = \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,20} \right\}\] gồm:
• 6 số chia hết cho 3 là: \[3\,;\,\,6\,;\,\,9\,;\,\,12\,;\,\,15\,;\,\,18.\]
• 14 số còn lại không chia hết cho 3.
Ta thấy số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Do đó, các trường hợp thuận lợi cho biến cố \(A\) là
− TH1: \({a^2},{b^2},{c^2}\) cùng chia hết cho 3 nên \(a,\,\,b,\,\,c\) cùng chia hết cho 3.
Do đó có \(C_6^3 = 20\) cách chọn \[a,\,\,b,\,\,c.\]
− TH2: \({a^2},\,\,{b^2},\,\,{c^2}\) cùng chia hết cho 3 dư 1 nên \(a,\,\,b,\,\,c\) cùng không chia hết cho 3.
Do đó có \(C_{14}^3 = 364\) cách chọn \[a,\,\,b,\,\,c\] \( \Rightarrow n(A) = 364 + 20 = 384\).
Khi đó xác suất của biến cố \(A\) là: \(P(A) = \frac{{384}}{{1140}} = \frac{{32}}{{95}}\).
Vậy \(m = 32\,;\,\,n = 95 \Rightarrow m + n = 127\). Đáp án: 127.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.