Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 5)

  • 73 lượt thi

  • 120 câu hỏi

  • 150 phút

Câu 1:

PHẦN 1: TƯ DUY ĐỊNH LƯỢNG

Lĩnh vực: Toán học (50 câu – 75 phút)

Câu 1. Cho biểu đồ về sự tác động của một số thực phẩm tới môi trường:

Media VietJack

Thực phẩm nào tác động tới môi trường nhiều nhất?

Xem đáp án

Thực phẩm tác động tới môi trường nhiều nhất là thịt bò. Chọn D.


Câu 2:

Cho khối chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a.\] Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với đáy, biết \(SC = a\sqrt 3 .\) Thể tích khối chóp \[S.ABCD\] là

Xem đáp án

Media VietJack

Vì hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với đáy.

Mà \(\left( {SAB} \right) \cap \left( {SAD} \right) = SA\) nên \(SA \bot \left( {ABCD} \right).\)

Ta có: \(AC = a\sqrt 2 \,;\,\,SA = \sqrt {S{C^2} - A{C^2}}  = \sqrt {{{\left( {a\sqrt 3 } \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}}  = a.\)

Thể tích khối chóp S.ABCD là: \({V_{S \cdot ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3}a \cdot {a^2} = \frac{{{a^3}}}{3}.\) Chọn B.


Câu 3:

Sinh nhật lần thứ 17 của An vào ngày 01 tháng 5 năm 2018. Bạn An muốn mua một chiếc máy ảnh giá \[3\,\,850\,\,000\] đồng để làm quà sinh nhật cho chính mình nên An quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 02 năm 2018. Trong các ngày tiếp theo, ngày sau bỏ ống nhiều hơn ngày trước 1000 đồng. Hỏi đến ngày sinh nhật của mình, An có bao nhiêu tiền (tính đến ngày 30 tháng 4 năm 2018)?

Xem đáp án

Số tiền bỏ heo của An mỗi ngày tạo thành một cấp số cộng có số hạng đầu \({u_1} = 1000\), công sai \(d = 1000.{\rm{ }}\)

Tổng số tiền bỏ heo tính đến ngày thứ \(n\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Tính đến ngày 30 tháng 4 năm 2018 (tính đến ngày thứ 89) tổng số tiền bỏ heo là:

\({S_{89}} = \frac{{89\left[ {2 \cdot 1000 + \left( {89 - 1} \right) \cdot 1000} \right]}}{2} = 4\,\,005\,\,000\) (đồng). Chọn C.


Câu 4:

Trong không gian với hệ tọa độ \[Oxyz,\] cho hình hộp \(ABCD.A'B'C'D'\) biết rằng \[A\left( { - 3\,;\,\,0\,;\,\,0} \right),\]\(B\left( {0\,;\,\,2\,;\,\,0} \right),\,\,D\left( {0\,;\,\,0\,;\,\,1} \right),\,\,A'\left( {1\,;\,\,2\,;\,\,3} \right).\) Tọa độ điểm \(C'\) là

Xem đáp án

Media VietJack

Gọi \(C'\left( {x\,;\,\,y\,;\,\,z} \right).\)

Ta có \(\overrightarrow {AB}  = \left( {3\,;\,\,2\,;\,\,0} \right),\,\,\overrightarrow {AD}  = \left( {3\,;\,\,0\,;\,\,1} \right),\,\,\overrightarrow {AA'}  = \left( {4\,;\,\,2\,;\,\,3} \right).\)

Mà \(\overrightarrow {AC'}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  \Rightarrow \overrightarrow {AC'}  = \left( {10\,;\,\,4\,;\,\,4} \right)\)

\[ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10 + 3}\\{y = 4 - 0}\\{z = 4 - 0}\end{array} \Rightarrow C'\left( {13\,;\,\,4\,;\,\,4} \right).} \right.\] Chọn C.

Câu 5:

Gọi \[A,\,\,B,\,\,C\] là các điểm biểu diễn các số phức \({z_1},\,\,{z_2},\,\,{z_3}\) là nghiệm của phương trình \({z^3} - 6{z^2} + 12z - 7 = 0.\) Diện tích \(S\) của tam giác \[ABC\] là

Xem đáp án

Sử dụng MTCT ta có phương trình \({z^3} - 6{z^2} + 12z - 7 = 0\) có 3 nghiệm \({z_1} = 1\,;\,\,{z_2} = \frac{5}{2} + \frac{{\sqrt 3 }}{2}i\,;\,\,{z_3} = \frac{5}{2} - \frac{{\sqrt 3 }}{2}i.\) Suy ra: \[A\left( {1\,;\,\,0} \right),\,\,B\left( {\frac{5}{2}\,;\,\,\frac{{\sqrt 3 }}{2}} \right),\,\,C\left( {\frac{5}{2}\,;\,\, - \frac{{\sqrt 3 }}{2}} \right).\]

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {\frac{9}{4} + \frac{3}{4}}  = \sqrt 3 {\rm{; }}\)\[AC = \left| {\overrightarrow {AC} } \right| = \sqrt {\frac{9}{4} + \frac{3}{4}}  = \sqrt 3 \,;\,\,BC = \left| {\overrightarrow {BC} } \right| = \sqrt 3 .\]

\( \Rightarrow \Delta ABC\) đều cạnh \(\sqrt 3 .\) Vậy \({S_{ABC}} = \frac{{{{\left( {\sqrt 3 } \right)}^2}\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{4}.\) Chọn  D.


Các bài thi hot trong chương:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận