Câu hỏi:

20/06/2024 1,490 Lưu

Sinh nhật lần thứ 17 của An vào ngày 01 tháng 5 năm 2018. Bạn An muốn mua một chiếc máy ảnh giá \[3\,\,850\,\,000\] đồng để làm quà sinh nhật cho chính mình nên An quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 02 năm 2018. Trong các ngày tiếp theo, ngày sau bỏ ống nhiều hơn ngày trước 1000 đồng. Hỏi đến ngày sinh nhật của mình, An có bao nhiêu tiền (tính đến ngày 30 tháng 4 năm 2018)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số tiền bỏ heo của An mỗi ngày tạo thành một cấp số cộng có số hạng đầu \({u_1} = 1000\), công sai \(d = 1000.{\rm{ }}\)

Tổng số tiền bỏ heo tính đến ngày thứ \(n\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Tính đến ngày 30 tháng 4 năm 2018 (tính đến ngày thứ 89) tổng số tiền bỏ heo là:

\({S_{89}} = \frac{{89\left[ {2 \cdot 1000 + \left( {89 - 1} \right) \cdot 1000} \right]}}{2} = 4\,\,005\,\,000\) (đồng). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có 1 đường tiệm cận ngang là \(y = 0.\)

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng hai đường tiệm cận

\( \Leftrightarrow \) Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng 1 đường tiệm cận đứng

\( \Leftrightarrow \) Phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có một nghiệm kép hoặc phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\Delta  = 0}\\{\left\{ {\begin{array}{*{20}{l}}{\Delta  > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - \frac{{13}}{4}}\\{m = 3}\\{m =  - 1}\end{array}} \right.\).

Vậy có ba giá trị của \(m\) thoả mãn yêu cầu đề bài. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP