Câu hỏi:

20/06/2024 998

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}.\) Gọi \(F\left( x \right),\,\,G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 8 \right) + G\left( 8 \right) = 8\) và \[F\left( 0 \right) + G\left( 0 \right) =  - 2.\] Khi đó \(\int\limits_{ - 2}^0 {f\left( { - 4x} \right)} \,dx\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\int\limits_{ - 2}^0 {f\left( { - 4x} \right)} \,dx =  - \frac{1}{4}\int\limits_{ - 2}^0 {f\left( { - 4x} \right)} \,{\rm{d}}\left( { - 4x} \right)\)

\( =  - \frac{1}{4}\int\limits_8^0 {f\left( x \right)} \,{\rm{d}}x = \frac{1}{4}\int\limits_8^0 {f\left( x \right)} \,{\rm{d}}x = \frac{1}{4}\left[ {F\left( 8 \right) - F\left( 0 \right)} \right]\).

Vì \(F\left( x \right),\,\,G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) nên \(G\left( x \right) = F\left( x \right) + C\).

Khi đó \[\left\{ {\begin{array}{*{20}{l}}{G\left( 8 \right) = F\left( 8 \right) + C}\\{G\left( 0 \right) = F\left( 0 \right) + C}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{G\left( 8 \right) = F\left( 8 \right) + C}\\{G\left( 0 \right) = F\left( 0 \right) + C}\end{array}} \right.} \right.\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{8 - F\left( 8 \right) = F\left( 8 \right) + C}\\{ - 2 - F\left( 0 \right) = F\left( 0 \right) + C}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{F\left( 8 \right) = \frac{{8 - C}}{2}}\\{F\left( 0 \right) = \frac{{ - 2 - C}}{2}}\end{array} \Rightarrow F\left( 8 \right) - F\left( 0 \right) = 5.} \right.\)

Vậy \(\int\limits_{ - 2}^0 {f\left( { - 4x} \right)} \,dx = \frac{1}{4}\left[ {F\left( 8 \right) - F\left( 0 \right)} \right] = \frac{5}{4}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có 1 đường tiệm cận ngang là \(y = 0.\)

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng hai đường tiệm cận

\( \Leftrightarrow \) Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng 1 đường tiệm cận đứng

\( \Leftrightarrow \) Phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có một nghiệm kép hoặc phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\Delta  = 0}\\{\left\{ {\begin{array}{*{20}{l}}{\Delta  > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - \frac{{13}}{4}}\\{m = 3}\\{m =  - 1}\end{array}} \right.\).

Vậy có ba giá trị của \(m\) thoả mãn yêu cầu đề bài. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP