Câu hỏi:
20/06/2024 1,399Cho hình chóp \[S.ABC\] có đáy là tam giác đều cạnh bằng \[a.\] Gọi \(I\) là trung điểm của \[AB,\] hình chiếu của \(S\) lên mặt phẳng \(\left( {ABC} \right),\) \(H\) là trung điểm của \[CI,\] góc giữa \[SA\] và mặt đáy bằng \(45^\circ \) (hình vẽ bên). Gọi \(G\) là trọng tâm tam giác \[SBC.\] Khoảng cách giữa hai đường thẳng \[SA\] và \[CG\] bằng
Quảng cáo
Trả lời:
Đặt hệ trục toạ độ \[Oxyz\] sao cho \(I\left( {0\,;\,\,0\,;\,\,0} \right),\,\,A\left( {\frac{a}{2}\,;\,\,0\,;\,\,0} \right),\,\,B\left( { - \frac{a}{2}\,;\,\,0\,;\,\,0} \right),\,\,\) \(C\left( {0\,;\,\,\frac{{a\sqrt 3 }}{2}\,;\,\,0} \right).\)
Ta có: \(CI = \frac{{a\sqrt 3 }}{2},\,\,IH = \frac{{a\sqrt 3 }}{4},\,\,AH = \frac{{a\sqrt 7 }}{4}\).
Vì \(H\) là trung điểm CI suy ra \(H\left( {0\,;\,\,\frac{{a\sqrt 3 }}{4}\,;\,\,0} \right).\)
Ta có \(\left( {SA,\,\,\left( {ABC} \right)} \right) = \left( {SA,\,\,AH} \right) = \widehat {SAH} = 45^\circ \)\( \Rightarrow SH = \frac{{a\sqrt 7 }}{4} \Rightarrow S\left( {0\,;\,\,\frac{{a\sqrt 3 }}{4}\,;\,\,\frac{{a\sqrt 7 }}{4}} \right).\)
Ta có: \(\overrightarrow {SA} = \left( {\frac{a}{2}\,;\,\, - \frac{{a\sqrt 3 }}{4}\,;\,\, - \frac{{a\sqrt 7 }}{4}} \right),\,\,\overrightarrow {CG} = \left( { - \frac{a}{6}\,;\,\, - \frac{{a\sqrt 3 }}{4}\,;\,\, - \frac{{a\sqrt 7 }}{{12}}} \right),\,\,\overrightarrow {CA} = \left( {\frac{a}{2}\,;\,\, - \frac{{a\sqrt 3 }}{2}\,;\,\,0} \right)\);
\[\left[ {\overrightarrow {SA} ,\,\,\overrightarrow {CG} } \right] = \left( {\frac{{a\sqrt {21} }}{{12}}\,;\,\,0\,;\,\,\frac{{a\sqrt 3 }}{{12}}} \right) \Rightarrow \left| {\,\left[ {\overrightarrow {SA} ,\,\,\overrightarrow {CG} } \right]\,} \right| = \frac{{a\sqrt 6 }}{6}\].
Khoảng cách giữa \[SA\] và \(CG\) nên \(\frac{{\left| {\,\left[ {\overrightarrow {SA} ,\,\,\overrightarrow {CG} } \right] \cdot \overrightarrow {CA} \,} \right|}}{{\left| {\,\left[ {\overrightarrow {SA} ,\,\,\overrightarrow {CG} } \right]\,} \right|}} = \frac{{a\sqrt {14} }}{8}.\) Chọn B.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.
Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)
Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a = - \frac{1}{h}\] (do \(h > 0)\)Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)
Suy ra thể tích không gian bên trong của đường hầm mô hình:
\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)
Lời giải
Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có 1 đường tiệm cận ngang là \(y = 0.\)
Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng hai đường tiệm cận
\( \Leftrightarrow \) Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng 1 đường tiệm cận đứng
\( \Leftrightarrow \) Phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có một nghiệm kép hoặc phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\Delta = 0}\\{\left\{ {\begin{array}{*{20}{l}}{\Delta > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = - \frac{{13}}{4}}\\{m = 3}\\{m = - 1}\end{array}} \right.\).
Vậy có ba giá trị của \(m\) thoả mãn yêu cầu đề bài. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.