Câu hỏi:

07/08/2024 798 Lưu

Ở cá xương, dòng nước chảy từ miệng qua mang theo một chiều và gần như liên tục là nhờ 

A. miệng và diềm nắp mang đóng mở nhịp nhàng. 
B. cách sắp xếp của mao mạch mang song song và cùng chiều dòng nước.
C. thành mao mạch mỏng và ẩm ướt. 
D. tỉ lệ giữa diện tích bề mặt trao đổi khí và thể tích cơ thể lớn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ở cá xương, dòng nước chảy từ miệng qua mang theo một chiều và gần như liên tục là nhờ miệng và diềm nắp mang đóng mở nhịp nhàng:

- Khi cá thở vào: Cửa miệng cá mở ra, thềm miệng hạ thấp xuống, nắp mang đóng dẫn đến thể tích khoang miệng tăng lên, áp suất trong khoang miệng giảm, nước tràn qua miệng vào khoang.

+ Khi cá thở ra: Cửa miệng cá đóng lại, thềm miệng nâng lên, nắp mang mở ra làm giảm thể tích khoang miệng, áp suất trong khoang miệng tăng lên có tác dụng đẩy nước từ khoang miệng đi qua mang. Ngay lúc đó, cửa miệng cá lại mở ra và thềm miệng lại hạ xuống làm cho nước lại tràn vào khoang miệng. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Gọi chiều rộng của mặt đáy của bể cá là \(a\,\,(m),\,\,a > 0.\)

\( \Rightarrow \) chiều dài của mặt đáy bể cá là \(2a\,\,(\;{\rm{m}}).\)

Gọi chiều cao bể cá là \(h\,\,(m).\)

Diện tích xung quanh của bể cá là \[{S_{xq}} = 2h\left( {a + 2a} \right) = 6ah\,\,\left( {{m^2}} \right).\]

Diện tích đáy của bể cá là \({S_d} = 2{a^2}\,\,\left( {\;{{\rm{m}}^2}} \right).\)

Ông Bình sử dụng hết \(5,5\;\,{{\rm{m}}^2}\) kính để làm một bể cá không nắp nên ta có

\(6ah + 2{a^2} = 5,5 \Rightarrow h = \frac{{5,5 - 2{a^2}}}{{6a}}\,\,(m).\)

Dung tích bể cá là \(V = a \cdot 2a \cdot \frac{{5,5 - 2{a^2}}}{{6a}} = \frac{{\left( {5,5 - 2{a^2}} \right)a}}{3}\,\,\left( {\;{{\rm{m}}^3}} \right).\)

Xét hàm số \[f\left( a \right) = \left( {5,5 - 2{a^2}} \right)a = 5,5a - 2{a^3}.\]

Có \[f'\left( a \right) = 5,5 - 6{a^2}\,;\,\,f' = 0 \Leftrightarrow 5,5 - 6{a^2} = 0 \Rightarrow a = \frac{{\sqrt {33} }}{6}.\]

Media VietJack

Ta có bảng biến thiên

Vậy \(maxV = \frac{1}{3}f(a) = \frac{1}{3} \cdot \frac{{11\sqrt {33} }}{{18}} \approx 1,17\,\;\left( {{{\rm{m}}^3}} \right).\) Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. con người, hàng hóa, cư trú, dịch vụ. 
B. dịch vụ, hàng hóa, tiền vốn, con người. 
C. dịch vụ, tiền vốn, chọn nơi làm việc. 
D. tiền vốn, con người, dịch vụ, cư trú.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP