Câu hỏi:
20/06/2024 89Cho hình trụ có thiết diện qua trục là hình vuông \[ABCD\] cạnh bằng \(2\sqrt 3 \;\,{\rm{cm}}\) với \[AB\] là đường kính của đường tròn đáy tâm \[O.\] Gọi \[M\] là điểm thuộc cung của đường tròn đáy sao cho \(\widehat {ABM} = 60^\circ .\) Thể tích của khối tứ diện \[ACDM\] là
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Hạ đường cao \(MH\) xuống \(AB.\)
Khi đó \({V_{ACDM}} = \frac{1}{3}MH \cdot {S_{ACD}} & (1)\)
\(\Delta ACD\) vuông tại \(D\) có \(AD = DC = 2\sqrt 3 \,cm\) nên
\({S_{ACD}} = \frac{1}{2}AD \cdot DC = \frac{1}{2} \cdot \left( {2\sqrt 3 } \right) \cdot \left( {2\sqrt 3 } \right) = 6\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right) & (2)\)
Do \(\widehat {ABM} = 60^\circ \) và \(\Delta ABM\) vuông tại \(M\) \((AB\) là đường kính của đáy) nên ta có \(AM = AB\sin \widehat {ABM} = 2\sqrt 3 \sin 60^\circ = 3\,\,(cm)\).
Áp dụng định lí Pythagore cho \[\Delta AMB\] ta có
\(MB = \sqrt {A{B^2} - A{M^2}} = \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - {3^2}} = \sqrt 3 \,\,(cm).\)Áp dụng hệ thức lượng vào tam giác vuông \(ABM\), ta có
\[\frac{1}{{M{H^2}}} = \frac{1}{{A{M^2}}} + \frac{1}{{M{B^2}}} = \frac{1}{{{3^2}}} + \frac{1}{{{{\left( {\sqrt 3 } \right)}^2}}} = \frac{4}{9}\]. Suy ra \[MH = \frac{3}{2}\,\,cm. & (3)\]
Thay (2), (3) vào (1) ta được \({V_{ACDM}} = \frac{1}{3} \cdot \frac{3}{2} \cdot 6 = 3\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\) Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị của tham số \(m\) để đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có đúng hai đường tiệm cận?
Câu 2:
Câu 3:
Ông Bình dự định sử dụng hết \(5,5\;{{\rm{m}}^2}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Câu 5:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Truyền kì là một thể văn xuôi tự sự thời trung đại phản ánh hiện thực qua những yếu tố kì lạ, hoang đường. Trong truyện truyền kì, thế giới con người và thế giới cōi âm với những thánh thần, ma quỷ có sự tương giao. Đó chính là yếu tố tạo nên sự hấp dẫn đặc biệt của thể loại.
Phương thức biểu đạt chính của đoạn trích là gì?
Câu 6:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Bác đã đi rồi sao, Bác ơi!
Mùa thu đang đẹp, nắng xanh trời
Miền Nam đang thắng, mơ ngày hội
Rước Bác vào thăm, thấy Bác cười!
(Trích Bác ơi – Tố Hữu)
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!