Câu hỏi:

07/08/2024 146

Có 5 dung dịch \({\rm{N}}{{\rm{H}}_3},{\rm{HCl}},{\rm{N}}{{\rm{H}}_4}{\rm{Cl}},{\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3},{\rm{C}}{{\rm{H}}_3}{\rm{COOH}}\) cùng nồng độ được đánh ngẫu nhiên là \({\rm{A}},{\rm{B}},{\rm{C}}\), D, E. Giá trị pH và khả năng dẫn điện của dung dịch theo bảng sau:

Dung dịch

A

B

C

D

E

pH

5,15

10,35

4,95

1,25

10,60

Khả năng dẫn điện

Tốt

Tốt

Kém

Tốt

Kém

Các dung dịch A, B, C, D, E lần lượt là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đầu tiên, xét về độ dẫn điện, các chất điện li yếu là các acid yếu, base yếu và chất hữu cơ Þ C và E phải là 1 trong 2 chất \({\rm{N}}{{\rm{H}}_3}\) và \({\rm{C}}{{\rm{H}}_3}{\rm{COOH}}.\)

Từ dữ kiện này ta dễ dàng loại được đáp án A và B.

- Tiếp theo, ta nhận xét về pH thứ tự tăng dần là: \({\rm{HCl}};{\rm{C}}{{\rm{H}}_3}{\rm{COOH}};{\rm{N}}{{\rm{H}}_4}{\rm{Cl}};{\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3};{\rm{N}}{{\rm{H}}_3}\)

Xếp theo pH tăng dần của bảng ta có: \({\rm{D}} < {\rm{C}} < {\rm{A}} < {\rm{E}} < {\rm{B}}\)

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có 1 đường tiệm cận ngang là \(y = 0.\)

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng hai đường tiệm cận

\( \Leftrightarrow \) Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng 1 đường tiệm cận đứng

\( \Leftrightarrow \) Phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có một nghiệm kép hoặc phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\Delta  = 0}\\{\left\{ {\begin{array}{*{20}{l}}{\Delta  > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - \frac{{13}}{4}}\\{m = 3}\\{m =  - 1}\end{array}} \right.\).

Vậy có ba giá trị của \(m\) thoả mãn yêu cầu đề bài. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP