Câu hỏi:

19/08/2025 187 Lưu

Cho một thanh hợp kim nặng 8,8 gam chứa các kim loại Ag, Fe, Mg hòa tan trong 750 mL \(CuS{O_4}\)0,1M. Sau một thời gian, thu được thanh hợp kim X và dung dịch Y. Rửa sạch và sấy khô thanh hợp kim X và cân thấy khối lượng tăng thêm so với thanh hợp kim ban đầu là 1,16 gam. Nhúng thanh X vào dung dịch \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\) đặc nóng dư thì thu được 2,576 lít khí \({\rm{S}}{{\rm{O}}_2}\) (đktc). Cho \(800\;{\rm{mL}}\) dung dịch \({\rm{NaOH}}\) 0,2M vào dung dịch Y, lọc lấy kết tủa rửa sạch, nung trong không khí đến khối lượng không đổi thu được 5 gam chất rắn. Phần trăm khối lượng của Ag trong hợp kim là

Đáp án: ……….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tóm tắt bài toán theo sơ đồ sau:

8,8 gAg:aMg:xFe:b+y+0,075  mol  CuSO4XAg:aFe du:bCu:x+y+ddYMgSO4:xFeSO4:yCuSO4:0,075xyThanhXm1,16  gam+H2SO4SO20,115mol

YMgSO4:xFeSO4:yCuSO4:0,075xy0,16 molNaOHMg(OH)2:xFe(OH)2:yCu(OH)2:0,075xyO2,t05 gMgO:xFe2O3:0,5yCuO:0,075xy

Chú ý thí nghiệm (1) phản ứng xảy ra trong một thời gian nên phản ứng không xảy ra hoàn toàn.

Nếu \({\rm{Mg}}\)còn dư trong phản ứng \({\rm{CuS}}{{\rm{O}}_4} \Rightarrow {\rm{m}}\) tăng \( = 0,075\). (64-24) \( = 3\;{\rm{g}} > 1,16.\) Vậy Mg phản ứng hết: \({\rm{x}}\) mol, \({\rm{Fe}}\) phản ứng một phần: y mol

Luôn có \({{\rm{n}}_{{\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}}} = {{\rm{n}}_{{\rm{S}}{{\rm{O}}_4}^{2 - }}} = 0,075\;{\rm{mol}} \Rightarrow {{\rm{n}}_{{\rm{N}}{{\rm{a}}^ + }}} = 0,15 < 0,16\) nên trong thí nghiệm dung dịch \({\rm{Y}}\) phản ứng với \({\rm{NaOH}}\) thì \({\rm{NaOH}}\) còn dư, toàn bộ lượng muối chuyển về hydroxide tương ứng \( \Rightarrow 5\) gam chất rắn chứa \({\rm{MgO}},{\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3},{\rm{CuO}}\)

\( \Rightarrow 40x + 80y + 80.(0,075 - x - y) = 5 \Rightarrow x = 0,025\;{\rm{mol}}\)

Khối lượng thanh kim loại tăng 1,16 gam

\( \Rightarrow x.(64 - 24) + y.(64 - 56) = 1,16 \to y = 0,02\)

Tổng khối lượng hợp kim là 8,8 gam \( \Rightarrow 108a + 24.0,025 + 56.(b + 0,02) = 8,8\,\,\,\,\,\,\,\,\,\,(1)\)

Bảo toàn electron: \(a + 3b + 0,045.2 = 0,115.2\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\)

Từ (1) và (2) giải hệ phương trình được \({\rm{a}} = 0,05,\;{\rm{b}} = 0,03\)

\(\% {\rm{Ag}} = \frac{{0,05 \cdot 108}}{{8,8}} \times 100\% = 61,36\% \). Đáp án: 61,36%

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - (2m + 1)x + {m^2} - 3}}\) có 1 đường tiệm cận ngang là \(y = 0.\)

Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng hai đường tiệm cận

\( \Leftrightarrow \) Đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\) có đúng 1 đường tiệm cận đứng

\( \Leftrightarrow \) Phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có một nghiệm kép hoặc phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\) có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\Delta  = 0}\\{\left\{ {\begin{array}{*{20}{l}}{\Delta  > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{l}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - \frac{{13}}{4}}\\{m = 3}\\{m =  - 1}\end{array}} \right.\).

Vậy có ba giá trị của \(m\) thoả mãn yêu cầu đề bài. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. con người, hàng hóa, cư trú, dịch vụ. 
B. dịch vụ, hàng hóa, tiền vốn, con người. 
C. dịch vụ, tiền vốn, chọn nơi làm việc. 
D. tiền vốn, con người, dịch vụ, cư trú.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP