Câu hỏi:

20/06/2024 1,764 Lưu

Trong không gian \[Oxyz,\] cho điểm \(A\left( {1\,;\,\,1\,;\,\,1} \right)\) và mặt phẳng \(\left( P \right):x + 2y = 0.\) Gọi \(\Delta \) là đường thẳng đi qua \(A\), song song với \(\left( P \right)\) và cách điểm \(B\left( { - 1\,;\,\,0\,;\,\,2} \right)\) một khoảng ngắn nhất. Hỏi \(\Delta \) nhận vectơ nào dưới đây làm VTCP?

A. \(\vec u = \left( {6\,;\,\,3\,;\,\, - 5} \right).\)   
B. \(\vec u = \left( {6\,;\,\, - 3\,;\,\,5} \right).\)           
C. \(\vec u = \left( {6\,;\,\,3\,;\,\,5} \right).\)            
D. \(\vec u = \left( {6\,;\,\, - 3\,;\,\, - 5} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(\left( Q \right)\) chứa \(\Delta \) và song song với \(\left( P \right)\). Suy ra \(\left( Q \right)\) có phương trình:

\(x - 1 + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 3 = 0.{\rm{ }}\)

Khi đó \(d{\left( {B\,;\,\,\Delta } \right)_{\min }} = BH\) với \(H\) là hình chiếu của \(B\) lên mặt phẳng \(\left( Q \right)\).

Đường thẳng \[BH\] đi qua \(B\), vuông góc với mặt phẳng \(\left( Q \right)\) có phương trình \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + t}\\{y = 2t}\\{z = 2}\end{array},\,\,t \in \mathbb{R}} \right.,\) ta được \(H\left( { - \frac{1}{5};\,\,\frac{8}{5};\,\,2} \right).\) Do đó \(\Delta \) là đường thẳng AH có \(\overrightarrow {AH}  = \left( {\frac{6}{5};\,\, - \frac{3}{5};\,\, - 1} \right).\)

Suy ra \(\vec u = \left( {6\,;\,\, - 3\,;\,\, - 5} \right)\) cũng là một vectơ chỉ phương của \(\Delta .\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Gọi chiều rộng của mặt đáy của bể cá là \(a\,\,(m),\,\,a > 0.\)

\( \Rightarrow \) chiều dài của mặt đáy bể cá là \(2a\,\,(\;{\rm{m}}).\)

Gọi chiều cao bể cá là \(h\,\,(m).\)

Diện tích xung quanh của bể cá là \[{S_{xq}} = 2h\left( {a + 2a} \right) = 6ah\,\,\left( {{m^2}} \right).\]

Diện tích đáy của bể cá là \({S_d} = 2{a^2}\,\,\left( {\;{{\rm{m}}^2}} \right).\)

Ông Bình sử dụng hết \(5,5\;\,{{\rm{m}}^2}\) kính để làm một bể cá không nắp nên ta có

\(6ah + 2{a^2} = 5,5 \Rightarrow h = \frac{{5,5 - 2{a^2}}}{{6a}}\,\,(m).\)

Dung tích bể cá là \(V = a \cdot 2a \cdot \frac{{5,5 - 2{a^2}}}{{6a}} = \frac{{\left( {5,5 - 2{a^2}} \right)a}}{3}\,\,\left( {\;{{\rm{m}}^3}} \right).\)

Xét hàm số \[f\left( a \right) = \left( {5,5 - 2{a^2}} \right)a = 5,5a - 2{a^3}.\]

Có \[f'\left( a \right) = 5,5 - 6{a^2}\,;\,\,f' = 0 \Leftrightarrow 5,5 - 6{a^2} = 0 \Rightarrow a = \frac{{\sqrt {33} }}{6}.\]

Media VietJack

Ta có bảng biến thiên

Vậy \(maxV = \frac{1}{3}f(a) = \frac{1}{3} \cdot \frac{{11\sqrt {33} }}{{18}} \approx 1,17\,\;\left( {{{\rm{m}}^3}} \right).\) Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. con người, hàng hóa, cư trú, dịch vụ. 
B. dịch vụ, hàng hóa, tiền vốn, con người. 
C. dịch vụ, tiền vốn, chọn nơi làm việc. 
D. tiền vốn, con người, dịch vụ, cư trú.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP