Câu hỏi:

07/08/2024 279 Lưu

Cho cân bằng trong bình kín: 2SO2( g)+O2( g)2SO3( g).
Khi tăng nhiệt độ thì tỉ khối của hỗn hợp khí so với \({{\rm{H}}_2}\) giảm đi. Phát biểu nào sau đây đúng khi nói về cân bằng này?

A. Phản ứng thuận thu nhiệt, cân bằng dịch chuyển theo chiều nghịch khi tăng nhiệt độ. 
B. Phản ứng nghịch tỏa nhiệt, cân bằng dịch chuyển theo chiều thuận khi tăng nhiệt độ. 
C. Phản ứng nghịch thu nhiệt, cân bằng dịch chuyển theo chiều thuận khi tăng nhiệt độ. 
D. Phản ứng thuận tỏa nhiệt, cân bằng dịch chuyển theo chiều nghịch khi tăng nhiệt độ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tỉ khối so với \({{\rm{H}}_2}\) giảm \( \Rightarrow {\rm{M}}\) hỗn hợp giảm đi dẫn đến tổng số mol khí tăng lên \( \Rightarrow \) cân bằng chuyển dịch theo chiều nghịch.

Khi tăng nhiệt độ cân bằng chuyển dịch theo chiều phản ứng thu nhiệt hay chiều phản ứng nghịch \((\Delta H > 0)\). Vậy chiều thuận của phản ứng tỏa nhiệt (\(\Delta H < 0).\)

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.

Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)

Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a =  - \frac{1}{h}\] (do \(h > 0)\)

Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)

Suy ra thể tích không gian bên trong của đường hầm mô hình:

\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)

Lời giải

Gọi chiều rộng của mặt đáy của bể cá là \(a\,\,(m),\,\,a > 0.\)

\( \Rightarrow \) chiều dài của mặt đáy bể cá là \(2a\,\,(\;{\rm{m}}).\)

Gọi chiều cao bể cá là \(h\,\,(m).\)

Diện tích xung quanh của bể cá là \[{S_{xq}} = 2h\left( {a + 2a} \right) = 6ah\,\,\left( {{m^2}} \right).\]

Diện tích đáy của bể cá là \({S_d} = 2{a^2}\,\,\left( {\;{{\rm{m}}^2}} \right).\)

Ông Bình sử dụng hết \(5,5\;\,{{\rm{m}}^2}\) kính để làm một bể cá không nắp nên ta có

\(6ah + 2{a^2} = 5,5 \Rightarrow h = \frac{{5,5 - 2{a^2}}}{{6a}}\,\,(m).\)

Dung tích bể cá là \(V = a \cdot 2a \cdot \frac{{5,5 - 2{a^2}}}{{6a}} = \frac{{\left( {5,5 - 2{a^2}} \right)a}}{3}\,\,\left( {\;{{\rm{m}}^3}} \right).\)

Xét hàm số \[f\left( a \right) = \left( {5,5 - 2{a^2}} \right)a = 5,5a - 2{a^3}.\]

Có \[f'\left( a \right) = 5,5 - 6{a^2}\,;\,\,f' = 0 \Leftrightarrow 5,5 - 6{a^2} = 0 \Rightarrow a = \frac{{\sqrt {33} }}{6}.\]

Media VietJack

Ta có bảng biến thiên

Vậy \(maxV = \frac{1}{3}f(a) = \frac{1}{3} \cdot \frac{{11\sqrt {33} }}{{18}} \approx 1,17\,\;\left( {{{\rm{m}}^3}} \right).\) Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. con người, hàng hóa, cư trú, dịch vụ. 
B. dịch vụ, hàng hóa, tiền vốn, con người. 
C. dịch vụ, tiền vốn, chọn nơi làm việc. 
D. tiền vốn, con người, dịch vụ, cư trú.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP