Cho khối tứ diện \[ABCD\] có cạnh \[AC,\,\,BD\] thỏa mãn \(A{C^2} + B{D^2} = 16\) và các cạnh còn lại đều bằng 6. Thể tích khối tứ diện \[ABCD\] đạt giá trị lớn nhất bằng
Quảng cáo
Trả lời:

Gọi \(E,\,\,F\) lần lượt là trung điểm của \(BD,\,\,AC.\)
Giả sử \(AC = a,\,\,BD = b,\) theo giả thiết:
\({a^2} + {b^2} = 16\,\,(a,\,\,b > 0).\)
Xét \[\Delta ABC\] và \[\Delta ADC\] có:
\[AC\] chung; \[AB\; = \;AD\] (gt); \[BC\; = \;CD\] (gt)
Do đó \[\Delta ABC = \Delta ADC\] (c.c.c)
Suy ra \[BF = DF\] (hai trung tuyến tương ứng)Do đó \[\Delta BDF\] cân tại \[F\] \[ \Rightarrow EF \bot BD\] (đường trung tuyến đồng thời là đường cao).
Ta có \(BF = \sqrt {A{B^2} - A{F^2}} = \sqrt {{6^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \sqrt {36 - \frac{{{a^2}}}{4}} \);
\(EF = \sqrt {B{F^2} - B{E^2}} = \sqrt {36 - \frac{{{a^2}}}{4} - \frac{{{b^2}}}{4}} = \sqrt {36 - \frac{{16}}{4}} = \sqrt {32} \).
\[ \Rightarrow {S_{BDF}} = \frac{1}{2} \cdot EF \cdot BD = \frac{1}{2} \cdot \sqrt {32} \cdot b = 2\sqrt 2 b\].
Do \(AC \bot BF,\,\,AC \bot DF\) nên \(AC \bot \left( {BDF} \right).\)
Ta có \({V_{ABCD}} = {V_{A.BDF}} + {V_{C.BDF}} = \frac{1}{3} \cdot AF \cdot {S_{BDF}} + \frac{1}{3} \cdot CF \cdot {S_{BDF}}\)
\( = \frac{1}{3} \cdot {S_{BDF}} \cdot \left( {AF + CF} \right) = \frac{1}{3} \cdot {S_{BDF}} \cdot AC = \frac{1}{3} \cdot a \cdot 2\sqrt 2 b = \frac{{2\sqrt 2 }}{3}ab\).
Áp dụng bất đẳng thức Cô-si, ta có: \[{\rm{ab}} \le \frac{{{a^2} + {b^2}}}{2} = \frac{{16}}{2} = 8\]\( \Rightarrow {V_{ABCD}} \le \frac{{2\sqrt 2 }}{3} \cdot 8 = \frac{{16\sqrt 2 }}{3}.\)
Vậy \({V_{m{\rm{ax}}}} = \frac{{16\sqrt 2 }}{3}\) khi và chỉ khi \(\left\{ \begin{array}{l}a = b\\{a^2} + {b^2} = 16\end{array} \right. \Leftrightarrow a = b = 2\sqrt 2 \)
Đẳng thức xảy \({\rm{ra}} \Leftrightarrow A{C^2} = 16 - A{C^2} \Leftrightarrow AC = 2\sqrt 2 .\) Chọn B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.
Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)
Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a = - \frac{1}{h}\] (do \(h > 0)\)Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)
Suy ra thể tích không gian bên trong của đường hầm mô hình:
\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)
Câu 2
Lời giải
Gọi chiều rộng của mặt đáy của bể cá là \(a\,\,(m),\,\,a > 0.\)
\( \Rightarrow \) chiều dài của mặt đáy bể cá là \(2a\,\,(\;{\rm{m}}).\)
Gọi chiều cao bể cá là \(h\,\,(m).\)
Diện tích xung quanh của bể cá là \[{S_{xq}} = 2h\left( {a + 2a} \right) = 6ah\,\,\left( {{m^2}} \right).\]
Diện tích đáy của bể cá là \({S_d} = 2{a^2}\,\,\left( {\;{{\rm{m}}^2}} \right).\)
Ông Bình sử dụng hết \(5,5\;\,{{\rm{m}}^2}\) kính để làm một bể cá không nắp nên ta có
\(6ah + 2{a^2} = 5,5 \Rightarrow h = \frac{{5,5 - 2{a^2}}}{{6a}}\,\,(m).\)
Dung tích bể cá là \(V = a \cdot 2a \cdot \frac{{5,5 - 2{a^2}}}{{6a}} = \frac{{\left( {5,5 - 2{a^2}} \right)a}}{3}\,\,\left( {\;{{\rm{m}}^3}} \right).\)
Xét hàm số \[f\left( a \right) = \left( {5,5 - 2{a^2}} \right)a = 5,5a - 2{a^3}.\]
Có \[f'\left( a \right) = 5,5 - 6{a^2}\,;\,\,f' = 0 \Leftrightarrow 5,5 - 6{a^2} = 0 \Rightarrow a = \frac{{\sqrt {33} }}{6}.\]

Ta có bảng biến thiên
Vậy \(maxV = \frac{1}{3}f(a) = \frac{1}{3} \cdot \frac{{11\sqrt {33} }}{{18}} \approx 1,17\,\;\left( {{{\rm{m}}^3}} \right).\) Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
