Ở một loài thú, tính trạng màu lông do một gen có 4 alen nằm trên nhiễm sắc thể thường quy định. Alen A quy định lông đen trội hoàn toàn so với các alen A2, alen A3 và alen A4; alen A2 quy định lông xám trội hoàn toàn so với các alen A3 và alen A4; alen A3 quy định lông vàng trội hoàn toàn so với alen A4 quy định lông trắng. Giả sử quần thể có 100 cá thể lông vàng, trong đó có 50 cá thể lông vàng thuần chủng. Cho tất cả các cá thể lông vàng giao phối ngẫu nhiên với nhau, trong số cá thể lông vàng thu được ở đời Fı, số cá thể có kiểu gen dị hợp chiếm tỉ lệ bao nhiêu?
Đáp án: ……….
                                    
                                                                                                                        Ở một loài thú, tính trạng màu lông do một gen có 4 alen nằm trên nhiễm sắc thể thường quy định. Alen A quy định lông đen trội hoàn toàn so với các alen A2, alen A3 và alen A4; alen A2 quy định lông xám trội hoàn toàn so với các alen A3 và alen A4; alen A3 quy định lông vàng trội hoàn toàn so với alen A4 quy định lông trắng. Giả sử quần thể có 100 cá thể lông vàng, trong đó có 50 cá thể lông vàng thuần chủng. Cho tất cả các cá thể lông vàng giao phối ngẫu nhiên với nhau, trong số cá thể lông vàng thu được ở đời Fı, số cá thể có kiểu gen dị hợp chiếm tỉ lệ bao nhiêu?
Đáp án: ……….
Quảng cáo
Trả lời:
Quy ước gen: Cá thể lông đen có kiểu gen: A1A1/2/3/4; Cá thể lông xám có kiểu gen: A2A2/3/4; Cá thể lông vàng có kiểu gen: A3A3/4; Cá thể lông trắng có kiểu gen: A4A4.
Quần thể có 100 cá thể lông vàng, trong đó có 50 cá thể lông vàng thuần chủng nên:
→ Thành phần kiểu gen của quần thể: \(\frac{1}{2}\;{{\rm{A}}_3}\;{{\rm{A}}_3}:\frac{1}{2}\;{{\rm{A}}_3}\;{{\rm{A}}_4}\)
→ Tần số alen \({{\rm{A}}_3} = \frac{3}{4}\); Tần số alen \({{\rm{A}}_4} = \frac{1}{4}.\)
Cho quần thể ngẫu phối: \(\left( {\frac{3}{4}{A_3}:\frac{1}{4}{A_4}} \right) \times \left( {\frac{3}{4}{A_3}:\frac{1}{4}{A_4}} \right)\)
→ Trong số cá thể lông vàng thu được ở đời \({{\rm{F}}_1}\), số cá thể dị hợp chiếm tỉ lệ là:
\(\frac{{{A_3}{A_4}}}{{{A_3}{A_{3/4}}}} = \frac{{{A_3}{A_4}}}{{1 - {A_4}{A_4}}} = \frac{{2 \times \frac{3}{4} \times \frac{1}{4}}}{{1 - \frac{1}{4} \times \frac{1}{4}}} = \frac{2}{5}\). Đáp án: \(\frac{2}{5}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
 - Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
 - Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
 - Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét trên một thiết diện parabol có chiều cao là \(h\) và độ dài đáy là \[2h\] và chọn hệ trục \[Oxy\] như hình vẽ.
Parabol \(\left( P \right)\) có phương trình \(\left( P \right):y = a{x^2} + h\,\,(a < 0)\)
Có \[B\left( {h\,;\,\,0} \right) \in (P) \Leftrightarrow 0 = a{h^2} + h \Leftrightarrow a = - \frac{1}{h}\] (do \(h > 0)\)Diện tích \(S\) của thiết diện là: \(S = \int\limits_{ - h}^h {\left( { - \frac{1}{h}{x^2} + h} \right)} \,dx = \frac{{4{h^2}}}{3},\,\,h = 3 - \frac{2}{5}x\)\( \Rightarrow S\left( x \right) = \frac{4}{3}{\left( {3 - \frac{2}{5}x} \right)^2}.\)
Suy ra thể tích không gian bên trong của đường hầm mô hình:
\(V = \int\limits_0^5 {S\left( x \right)} \,dx = \int\limits_0^5 {\frac{4}{3}} {\left( {3 - \frac{2}{5}x} \right)^2}dx \approx 28,888\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)\( \Rightarrow V \approx 29\,\,{\rm{c}}{{\rm{m}}^3}.\)
Câu 2
Lời giải
Gọi chiều rộng của mặt đáy của bể cá là \(a\,\,(m),\,\,a > 0.\)
\( \Rightarrow \) chiều dài của mặt đáy bể cá là \(2a\,\,(\;{\rm{m}}).\)
Gọi chiều cao bể cá là \(h\,\,(m).\)
Diện tích xung quanh của bể cá là \[{S_{xq}} = 2h\left( {a + 2a} \right) = 6ah\,\,\left( {{m^2}} \right).\]
Diện tích đáy của bể cá là \({S_d} = 2{a^2}\,\,\left( {\;{{\rm{m}}^2}} \right).\)
Ông Bình sử dụng hết \(5,5\;\,{{\rm{m}}^2}\) kính để làm một bể cá không nắp nên ta có
\(6ah + 2{a^2} = 5,5 \Rightarrow h = \frac{{5,5 - 2{a^2}}}{{6a}}\,\,(m).\)
Dung tích bể cá là \(V = a \cdot 2a \cdot \frac{{5,5 - 2{a^2}}}{{6a}} = \frac{{\left( {5,5 - 2{a^2}} \right)a}}{3}\,\,\left( {\;{{\rm{m}}^3}} \right).\)
Xét hàm số \[f\left( a \right) = \left( {5,5 - 2{a^2}} \right)a = 5,5a - 2{a^3}.\]
Có \[f'\left( a \right) = 5,5 - 6{a^2}\,;\,\,f' = 0 \Leftrightarrow 5,5 - 6{a^2} = 0 \Rightarrow a = \frac{{\sqrt {33} }}{6}.\]

Ta có bảng biến thiên
Vậy \(maxV = \frac{1}{3}f(a) = \frac{1}{3} \cdot \frac{{11\sqrt {33} }}{{18}} \approx 1,17\,\;\left( {{{\rm{m}}^3}} \right).\) Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
