Câu hỏi:

20/06/2024 2,420

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{\sin x}}{{1 + 3\cos x}}\) và \(F\left( {\frac{\pi }{2}} \right) = 2.\) Tính \(F\left( 0 \right).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1: Ta có \[F\left( x \right) = \int {\frac{{\sin xdx}}{{1 + 3\cos x}}}  =  - \int {\frac{{d\left( {\cos x} \right)}}{{3\cos x + 1}}}  =  - \frac{1}{3}\ln \left| {3\cos x + 1} \right| + C.\]

Mà \(F\left( {\frac{\pi }{2}} \right) =  - \frac{1}{3}\ln \left| {3\cos \left( {\frac{\pi }{2}} \right) + 1} \right| + C = 2 \Rightarrow C = 2.\)

Do đó, \(F\left( 0 \right) =  - \frac{1}{3}\ln \left| {3\cos \left( 0 \right) + 1} \right| + 2 =  - \frac{1}{3}\ln 4 + 2 =  - \frac{2}{3}\ln 2 + 2.\)

Vậy \(F\left( 0 \right) =  - \frac{2}{3}\ln 2 + 2.\)

Cách 2: Sử dụng máy tính cầm tay:

 \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)} \,{\rm{d}}x = F\left( {\frac{\pi }{2}} \right) - F(0) \Rightarrow F(0) = F\left( {\frac{\pi }{2}} \right) - \int\limits_0^{\frac{\pi }{2}} {\frac{{\sin x}}{{1 + 3\cos x}}} \;{\rm{d}}x.\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Ta có: \(\overrightarrow {{n_P}}  = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}}  = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)

\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)

\( \Rightarrow \overrightarrow {MA}  = (2; - 1;2) \Rightarrow MA = 3\)

Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có

\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)

\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)

\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)

Lời giải

Media VietJack

Chọn hệ trục tọa độ như hình vẽ (tâm của hình tròn)

Hai Elip lần lượt có phương trình là \(\left( {{E_1}} \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) và \(\left( {{E_2}} \right):\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1.\)

Tọa độ giao điểm của hai Elip trong góc phần tư thứ nhất là nghiệm phương trình \({x^2} + \frac{{1 - \frac{{{x^2}}}{4}}}{4} = 1 \Leftrightarrow {x^2} = \frac{4}{5} \Rightarrow x = \frac{{2\sqrt 5 }}{5}.\)

Diện tích hình phẳng cần tìm là:

\[S = \pi  \cdot {2^2} - \pi  \cdot 2 \cdot 1 - 8\int\limits_2^{\frac{{2\sqrt 5 }}{5}} {\left( {2\sqrt {1 - {x^2}}  - \sqrt {1 - \frac{{{x^2}}}{4}} } \right)} \,{\rm{d}}x \approx 3,7.\] Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP