Câu hỏi:
20/06/2024 140
Có bao nhiêu số phức \(z\) thỏa mãn \(\left| {2z + \bar z} \right| = 3\) và \(w = z\left( {1 + i} \right) + 1 - i\) là số thuần ảo?
Có bao nhiêu số phức \(z\) thỏa mãn \(\left| {2z + \bar z} \right| = 3\) và \(w = z\left( {1 + i} \right) + 1 - i\) là số thuần ảo?
Quảng cáo
Trả lời:
Đặt \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{Z}} \right)\) nên \(\bar z = x - yi.\)
Ta có \(\left| {2z + \bar z} \right| = 3 \Leftrightarrow \left| {2\left( {x + yi} \right) + x - yi} \right| = 3\)\[ \Leftrightarrow \left| {3x + yi} \right| = 3 \Leftrightarrow \sqrt {{{\left( {3x} \right)}^2} + {y^2}} = 3 \Leftrightarrow 9{x^2} + {y^2} = 9\]
Lại có \(w = z\left( {1 + i} \right) + 1 - i = \left( {x + yi} \right)\left( {1 + i} \right) + 1 - i\)\( = x + xi + yi - y + 1 - i = \left( {x - y + 1} \right) + \left( {x + y - 1} \right)i\).
Khi đó \(w\) là số thuần ảo \( \Leftrightarrow x - y + 1 = 0\) (2).
Từ (1), (2) ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{9{x^2} + {y^2} = 9}\\{x - y + 1 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{9{x^2} + {{\left( {x + 1} \right)}^2} = 9}\\{y = x + 1}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left( {x\,;\,\,y} \right) = \left\{ {\left( { - 1\,;\,\,0} \right),\,\,\left( {\frac{4}{5};\frac{9}{5}} \right)} \right\}.\) Chọn C.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\overrightarrow {{n_P}} = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}} = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)
\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)
\( \Rightarrow \overrightarrow {MA} = (2; - 1;2) \Rightarrow MA = 3\)
Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)
\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)
\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)
Lời giải
Chọn hệ trục tọa độ như hình vẽ (tâm của hình tròn)
Hai Elip lần lượt có phương trình là \(\left( {{E_1}} \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) và \(\left( {{E_2}} \right):\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1.\)Tọa độ giao điểm của hai Elip trong góc phần tư thứ nhất là nghiệm phương trình \({x^2} + \frac{{1 - \frac{{{x^2}}}{4}}}{4} = 1 \Leftrightarrow {x^2} = \frac{4}{5} \Rightarrow x = \frac{{2\sqrt 5 }}{5}.\)
Diện tích hình phẳng cần tìm là:
\[S = \pi \cdot {2^2} - \pi \cdot 2 \cdot 1 - 8\int\limits_2^{\frac{{2\sqrt 5 }}{5}} {\left( {2\sqrt {1 - {x^2}} - \sqrt {1 - \frac{{{x^2}}}{4}} } \right)} \,{\rm{d}}x \approx 3,7.\] Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.