Câu hỏi:
20/06/2024 120
Trong không gian \[Oxyz,\] cho đường thẳng \(\Delta :\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 2}}{{ - 2}}\) và ba điểm \[A\left( {1\,;\,\,3\,;\,\, - 2} \right),\]\[B\left( {0\,;\,\,4\,;\,\, - 5} \right),\,\,C\left( {1\,;\,\,2\,;\,\, - 4} \right)\]. Biết điểm \[M\left( {a\,;\,\,b\,;\,\,c} \right)\] thuộc đường thẳng \(\Delta \) sao cho \(M{A^2} + M{B^2} + 2M{C^2}\) đạt giá trị nhỏ nhất. Khi đó, giá trị của \(a + b + c\) bằng
Trong không gian \[Oxyz,\] cho đường thẳng \(\Delta :\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 2}}{{ - 2}}\) và ba điểm \[A\left( {1\,;\,\,3\,;\,\, - 2} \right),\]\[B\left( {0\,;\,\,4\,;\,\, - 5} \right),\,\,C\left( {1\,;\,\,2\,;\,\, - 4} \right)\]. Biết điểm \[M\left( {a\,;\,\,b\,;\,\,c} \right)\] thuộc đường thẳng \(\Delta \) sao cho \(M{A^2} + M{B^2} + 2M{C^2}\) đạt giá trị nhỏ nhất. Khi đó, giá trị của \(a + b + c\) bằng
Quảng cáo
Trả lời:
Vì \[M \in \Delta \Rightarrow M\left( {t\,;\,\,1 + t\,;\,\, - 2 - 2t} \right)\] nên ta có
• \[M{A^2} = {\left( {1 - t} \right)^2} + {\left( {2 - t} \right)^2} + {\left( {2t} \right)^2} = 6{t^2} - 6t + 5\]
• \(M{B^2} = {\left( { - t} \right)^2} + {\left( {3 - t} \right)^2} + {\left( { - 3 + 2t} \right)^2} = 6{t^2} - 18t + 18;\)
• \(M{C^2} = {\left( {1 - t} \right)^2} + {\left( {1 - t} \right)^2} + {\left( { - 2 + 2t} \right)^2} = 6{t^2} - 12t + 6 \Rightarrow 2M{C^2} = 12{t^2} - 24t + 12.\)
Suy ra \(M{A^2} + M{B^2} + 2M{C^2} = 24{t^2} - 48t + 35 = 24\left( {{t^2} - 2t + 1} \right) + 11 = 24{\left( {t - 1} \right)^2} + 11 \ge 11\)
Nên \(M{A^2} + M{B^2} + 2M{C^2}\) đạt giá trị nhỏ nhất khi và chỉ khi \(t = 1\).
Do đó \[M\left( {1\,;\,\,2\,;\,\, - 4} \right)\] nên \(a = 1\,;\,\,b = 2\,;\,\,c = - 4.\) Vậy \(a + b + c = - 1.\) Chọn B.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\overrightarrow {{n_P}} = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}} = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)
\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)
\( \Rightarrow \overrightarrow {MA} = (2; - 1;2) \Rightarrow MA = 3\)
Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)
\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)
\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)
Lời giải
Chọn hệ trục tọa độ như hình vẽ (tâm của hình tròn)
Hai Elip lần lượt có phương trình là \(\left( {{E_1}} \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) và \(\left( {{E_2}} \right):\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1.\)Tọa độ giao điểm của hai Elip trong góc phần tư thứ nhất là nghiệm phương trình \({x^2} + \frac{{1 - \frac{{{x^2}}}{4}}}{4} = 1 \Leftrightarrow {x^2} = \frac{4}{5} \Rightarrow x = \frac{{2\sqrt 5 }}{5}.\)
Diện tích hình phẳng cần tìm là:
\[S = \pi \cdot {2^2} - \pi \cdot 2 \cdot 1 - 8\int\limits_2^{\frac{{2\sqrt 5 }}{5}} {\left( {2\sqrt {1 - {x^2}} - \sqrt {1 - \frac{{{x^2}}}{4}} } \right)} \,{\rm{d}}x \approx 3,7.\] Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.