Câu hỏi:

20/06/2024 1,765

Hình vē dưới đây là một lưới ô vuông có kích thước 3x2 gồm 12 nút lưới. Từ 12 nút lưới có thể chọn ra 3 nút để làm đỉnh của một tam giác vuông (xem hình minh họa). Hỏi có bao nhiêu tam giác vuông có 3 đỉnh lấy từ 12 nút lưới ô vuông đã cho.
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

− Mỗi hình vuông \(1 \times 1\) hay \(2 \times 2\) hoặc hình chữ nhật \(1 \times 3\) đều tạo ra được 4 tam giác vuông với 3 đỉnh tam giác lấy từ 4 đỉnh của các hình tương ứng.

− Mỗi hình chữ nhật \(1 \times 2\) và \(2 \times 3\) lần lượt tạo ra được 6 và 12 tam giác vuông với 3 đỉnh tam giấc lấy từ 4 đỉnh của các hình và các điểm chia cách đều nằm trên các cạnh.

• Có 6 hình vuông \(1 \times 1\) nên có \(6 \cdot 4 = 24\) (tam giác vuông).

• Có 2 hình vuông \(2 \times 2\) nên có \(2 \cdot 4 = 8\) (tam giác vuông).

• Có 7 hình chữ nhật \(1 \times 2\) nên có \(6 \cdot 7 = 42\) (tam giác vuông).

• Có 2 hình chữ nhật \(1 \times 3\) nên có \(2 \cdot 4 = 8\) (tam giác vuông).

• Có 1 hình chữ nhật \(2 \times 3\) nên có \(1 \cdot 12 = 12\) (tam giác vuông).

Suy ra có tất cả \(T = 24 + 8 + 42 + 8 + 12 = 94\) tam giác vuông được tạo thành.

Đáp án: 94.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Ta có: \(\overrightarrow {{n_P}}  = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}}  = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)

\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)

\( \Rightarrow \overrightarrow {MA}  = (2; - 1;2) \Rightarrow MA = 3\)

Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có

\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)

\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)

\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)

Lời giải

Media VietJack

Chọn hệ trục tọa độ như hình vẽ (tâm của hình tròn)

Hai Elip lần lượt có phương trình là \(\left( {{E_1}} \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) và \(\left( {{E_2}} \right):\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1.\)

Tọa độ giao điểm của hai Elip trong góc phần tư thứ nhất là nghiệm phương trình \({x^2} + \frac{{1 - \frac{{{x^2}}}{4}}}{4} = 1 \Leftrightarrow {x^2} = \frac{4}{5} \Rightarrow x = \frac{{2\sqrt 5 }}{5}.\)

Diện tích hình phẳng cần tìm là:

\[S = \pi  \cdot {2^2} - \pi  \cdot 2 \cdot 1 - 8\int\limits_2^{\frac{{2\sqrt 5 }}{5}} {\left( {2\sqrt {1 - {x^2}}  - \sqrt {1 - \frac{{{x^2}}}{4}} } \right)} \,{\rm{d}}x \approx 3,7.\] Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP