Câu hỏi:

19/08/2025 313 Lưu

Cho hàm số \(y = f\left( x \right)\) có đồ thị được cho như hình vẽ ở bên dưới. Hỏi phương trình \(\left| {f\left( {{x^3} - 3x + 1} \right) - 2} \right| = 1\) có tất cả bao nhiêu nghiệm thực phân biệt?

Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Dựa vào đồ thị hàm số \(f\left( x \right)\), ta có:

\(\left| {f\left( {{x^3} - 3x + 1} \right) - 2} \right| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( {{x^3} - 3x + 1} \right) = 1}\\{f\left( {{x^3} - 3x + 1} \right) = 3}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^3} - 3x + 1 = b}&{(b <  - 1)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}\\{{x^3} - 3x + 1 = c}&{( - 1 < c < 2)\,\,\,\,\,\,\,\,\,\,(3)}\\{{x^3} - 3x + 1 = d}&{(d > 3)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(4)}\\{{x^3} - 3x + 1 = a}&{(a > d)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)}\end{array}} \right.\)

Dựa vào đồ thị hàm số \(y = {x^3} - 3x + 1\) (hình vẽ dưới đây)

Media VietJack

Suy ra phương trình (1), (2), (4) mỗi phương trình có 1 nghiệm.

Phương trình (3) có 3 nghiệm và các nghiệm đều phân biệt.

Vậy phương trình đã cho có 6 nghiệm phân biệt.

Đáp án: 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Ta có: \(\overrightarrow {{n_P}}  = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}}  = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)

\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)

\( \Rightarrow \overrightarrow {MA}  = (2; - 1;2) \Rightarrow MA = 3\)

Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có

\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)

\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)

\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)

Lời giải

Gọi chiều cao máng nước là: \(h = 10 \cdot \cos \theta \,\,({\rm{cm}})\).

Chiều dài đáy trên máng nước là:

\(10 + 2 \cdot \sqrt {{{10}^2} - {h^2}}  = 10 + 2 \cdot \sqrt {{{10}^2} - {{\left( {10 \cdot \cos \theta } \right)}^2}}  = 10 + 20 \cdot \sin \theta \,\,({\rm{cm}})\).

Máng nước chứa được nhiều nước nhất khi diện tích hình vẽ lớn nhất

\( \Leftrightarrow S = \frac{{10 + 20 \cdot \sin \theta  + 10}}{2} \cdot 10 \cdot \cos \theta  = 100 \cdot (1 + \sin \theta ) \cdot \cos \theta  = 100 \cdot \left( {\cos \theta  + \frac{{\sin 2\theta }}{2}} \right)\).

Ta có \(S' = 100\left( { - \sin \theta  + \cos 2\theta } \right) = 100\left( { - \sin \theta  + 1 - 2{{\sin }^2}\theta } \right)\)

Khi đó \(S' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sin \theta  =  - 1}\\{\sin \theta  = \frac{1}{2}}\end{array}} \right.\).

Ta có bảng biến thiên:

Media VietJack

Do đó \({S_{\max }} \Leftrightarrow \sin \theta  = \frac{1}{2} \Leftrightarrow \sin \theta  = 30^\circ {\rm{.}}\) Đáp án: 30.

Câu 5

A. Ngăn chặn nạn phá rừng, đốt rừng.
B. Đẩy mạnh giao đất, giao rừng. 
C. Phát triển khai thác, chế biến gỗ. 
D. Khai thác hợp lí đi đôi với trồng rừng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nâng cao sức cạnh tranh cho thị trường chung. 
B. Giảm thiểu những rủi ro khi chuyển đổi tiền tệ. 
C. Thuận lợi cho việc chuyển giao vốn trong EU. 
D. Thu hẹp trình độ phát triển kinh tế giữa các nước.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. HX.                                                               

B. HY.

C. HZ.                                                                 
D. 3 dung dịch dẫn điện như nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP