Câu hỏi:

13/07/2024 2,759

Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x + 2 \ge 0}\\{{x^2} - 6x + 2m > 0}\end{array}} \right.\).

Để đồ thị hàm số có hai đường tiệm cận đứng thì phương trình \({x^2} - 6x + 2m = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) lớn hơn \[ - 2\] nên ta có

\(\left\{ \begin{array}{l}\Delta ' > 0\\{x_1} >  - 2\\{x_2} >  - 2\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}9 - 2m > 0\\{x_1} + 2 + {x_2} + 2 > 0\\\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) > 0\end{array} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l}9 - 2m > 0\\{x_1} + {x_2} + 4 > 0\\{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4 > 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2m < 9\\6 + 4 > 0\\2m + 2 \cdot 6 + 4 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2m < 9\\2m >  - 16\end{array} \right.\)\( \Leftrightarrow  - 8 < m < \frac{9}{2}\).

Do đó tập \(S = \left\{ { - 7\,;\,\, - 6\,;\, - 5\,;\, \ldots \,;\,4} \right\}\) có 12 giá trị.

Đáp án: 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP