Câu hỏi:

24/06/2024 146

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) sao cho  Xét hàm số \(g\left( x \right) = f\left( {{x^3} + x} \right) - {x^2} + 2x + m.\) Giá trị của tham số \(m\) để \[{\max _{x \in \left[ {0\,;\,\,2} \right]}}g\left( x \right) = 8\] là\({\max _{x \in \left[ {0\,;\,\,10} \right]}}f\left( x \right) = f\left( 2 \right) = 4.\)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(t = {x^3} + x.\) Vì \(x \in \left[ {0\,;\,\,2} \right]\) nên \(t \in \left[ {0\,;\,\,10} \right].\)

Ta có: \({\max _{x \in \left[ {0\,;\,\,2} \right]}}g\left( x \right) = {\max _{x \in \left[ {0\,;\,\,2} \right]}}\left[ {f\left( {{x^3} + x} \right) - {x^2} + 2x + m} \right]\)

\( = {\max _{x \in \left[ {0\,;\,\,2} \right]}}f\left( {{x^3} + x} \right) + {\max _{x \in \left[ {0\,;\,\,2} \right]}}\left( { - {x^2} + 2x + m} \right)\)

\( = {\max _{x \in \left[ {0\,;\,\,10} \right]}}f\left( t \right) + 1 + m\) (với \(t = {x^3} + x\) và \({\max _{x \in \left[ {0\,;\,\,2} \right]}}\left[ { - {x^2} + 2x + m} \right] = 1 + m\)).

\( = {\max _{x \in \left[ {0\,;\,\,10} \right]}}f\left( x \right) + 1 + m = 4 + 1 + m = 5 + m.\)

Suy ra \({\max _{x \in \left[ {0\,;\,\,2} \right]}}g(x) = 5 + m \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{t = 2}\end{array} \Leftrightarrow x = 1} \right..\)

Theo giả thiết, ta có: \({\max _{x \in \left[ {0\,;\,\,2} \right]}}g\left( x \right) = 8 \Leftrightarrow m + 5 = 8 \Leftrightarrow m = 3.\) Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{2{\rm{x}} + 2{\rm{ khi x}} \ge 1}\\{3{{\rm{x}}^2} + 1{\rm{ khi }}x < 1}\end{array}} \right..\) Giả sử \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thoả mãn \(F\left( 0 \right) = 2.\) Giá trị của \(F\left( { - 1} \right) + 2F\left( 2 \right)\) bằng

Xem đáp án » 11/07/2024 37,941

Câu 2:

Cho hình lập phương \(ABCD.A'B'C'D'.\) Gọi \(M\) là trung điểm của \(B'C'.\) Góc giữa hai đường thẳng AM và \(BC'\) bằng

Xem đáp án » 24/06/2024 10,255

Câu 3:

Cho \({4^x} + {4^{ - x}} = 7.\) Khi đó biểu thức \(P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + 4 \cdot {2^x} + 4 \cdot {2^{ - x}}}} = \frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,\,b \in \mathbb{Z}.\) Giá trị của \[ab\] bằng

Xem đáp án » 24/06/2024 7,369

Câu 4:

Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \[h\left( t \right) = 29 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\] với \(h\) tính bằng độ \(C\) và \(t\) là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là

Xem đáp án » 24/06/2024 7,237

Câu 5:

Thủy phân hoàn toàn 1 mol pentapeptide X, thu được 2 mol glyin (Gly), 1 mol alanine (Ala), 1 mol valine (Val) và 1 mol phenylalanine (Phe). Thủy phân không hoàn toàn X thu được dipeptide Val-Phe và tripeptide Gly-Ala- Val nhưng không thu được dipeptide Gly-Gly. Chất X có công thức là

Xem đáp án » 23/07/2024 5,602

Câu 6:

Biểu hiện của nền kinh tế tri thức ở Hoa Kỳ không phải là 

Xem đáp án » 23/07/2024 3,387

Câu 7:

Chất tham gia phản ứng tráng gương là

Xem đáp án » 23/07/2024 3,251
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua