Câu hỏi:
11/07/2024 63Xét các số thực dương \[x,\,\,y\] thỏa mãn \(\frac{1}{2}{\log _2}\frac{x}{4} + {\log _2}y = \frac{{4 - x{y^2}}}{{{y^2}}}.\) Khi \(x + 4y\) đạt giá trị nhỏ nhất thì giá trị \(\frac{x}{y}\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giải thiết trở thành: \({\log _2}x - {\log _2}4 + 2{\log _2}y = \frac{8}{{{y^2}}} - 2x\)
\( \Leftrightarrow {\log _2}x - {\log _2}4 - {\log _2}{y^{ - 2}} = 8 \cdot {y^{ - 2}} - 2x\)
\( \Leftrightarrow {\log _2}x + 2x = {\log _2}4 + {\log _2}{y^{ - 2}} + 2 \cdot \left( {4 \cdot {y^{ - 2}}} \right)\)
\( \Leftrightarrow {\log _2}x + 2x = {\log _2}\left( {4{y^{ - 2}}} \right) + 2 \cdot \left( {4{y^{ - 2}}} \right)\)
Xét hàm số \(f\left( t \right) = {\log _2}t + 2t\,\,\left( {t > 0} \right)\) có \(f'\left( t \right) = \frac{1}{{t\ln 2}} + 2 > 0,\,\,\forall t > 0\)
Suy ra hàm số \(f(t)\) đồng biến trên khoảng \((0; + \infty ).\)
Do đó \[f\left( x \right) = f\left( {4{y^{ - 2}}} \right) \Leftrightarrow x = 4{y^{ - 2}} \Leftrightarrow x = \frac{4}{{{y^2}}}\].
Đặt \(P = x + 4y = 2y + 2y + \frac{4}{{{y^2}}} \ge 3\sqrt[3]{{2y \cdot 2y \cdot \frac{4}{{{y^2}}}}} = 6\sqrt[3]{2}.\)
Dấu "=" xảy ra khi \(2y = \frac{4}{{{y^2}}} \Leftrightarrow y = \sqrt[3]{2} \Rightarrow \frac{x}{y} = \frac{4}{{{y^3}}} = \frac{4}{2} = 2.\)
Đáp án: 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \[h\left( t \right) = 29 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\] với \(h\) tính bằng độ \(C\) và \(t\) là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là
Câu 2:
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{2{\rm{x}} + 2{\rm{ khi x}} \ge 1}\\{3{{\rm{x}}^2} + 1{\rm{ khi }}x < 1}\end{array}} \right..\) Giả sử \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thoả mãn \(F\left( 0 \right) = 2.\) Giá trị của \(F\left( { - 1} \right) + 2F\left( 2 \right)\) bằng
Câu 3:
Thủy phân hoàn toàn 1 mol pentapeptide X, thu được 2 mol glyin (Gly), 1 mol alanine (Ala), 1 mol valine (Val) và 1 mol phenylalanine (Phe). Thủy phân không hoàn toàn X thu được dipeptide Val-Phe và tripeptide Gly-Ala- Val nhưng không thu được dipeptide Gly-Gly. Chất X có công thức là
Câu 4:
Cho các tập hợp khác rỗng \(A = \left[ {2m\,;\,\,m + 3} \right]\) và \(B = \left( { - \infty \,;\,\, - 2} \right] \cup \left( {4\,;\,\, + \infty } \right).\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để \(A \cap B \ne \emptyset \)?
Câu 6:
Cho hình lập phương \(ABCD.A'B'C'D'.\) Gọi \(M\) là trung điểm của \(B'C'.\) Góc giữa hai đường thẳng AM và \(BC'\) bằng
Câu 7:
về câu hỏi!