Câu hỏi:
11/07/2024 307Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng nhau. Gọi \[M,\,\,N\] lần lượt là hai điểm thuộc \(A'C\) và \(BC'\) sao cho \[MN\] là đoạn vuông góc chung của hai đường thẳng đó. Tính tỉ số \(\frac{{NB}}{{NC'}}.\)
Quảng cáo
Trả lời:
Kết quả bài toán sẽ không thay đổi nếu ta xét lăng trụ đều \(ABC.A'B'C'\) có cạnh bên bằng cạnh đáy bằng 2.
Chọn hệ trục tọa độ \[Oxyz\] như hình vẽ \(O\) là trung điểm của \(BC).\)
Ta có \(A'\left( {0\,;\,\, - \sqrt 3 \,;\,\,2} \right),\,\,B\left( {1\,;\,\,0\,;\,\,0} \right),\,\,C\left( { - 1\,;\,\,0;0} \right),\,\,C'\left( { - 1\,;\,\,0\,;\,\,2} \right)\)
Suy ra \(\overrightarrow {CA'} = \left( {1\,;\,\, - \sqrt 3 \,;\,\,2} \right),\overrightarrow {BC'} = \left( { - 2\,;\,\,0\,;\,\,2} \right).\)Do \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {CM} = m\overrightarrow {CA'} }\\{\overrightarrow {BN} = n\overrightarrow {BC'} }\end{array}} \right.\) nên ta có \(M\left( { - 1 + m\,;\,\, - \sqrt 3 m\,;\,\,2m} \right),N\left( {1 - 2n\,;\,\,0\,;\,\,2n} \right).\)
Suy ra \(\overrightarrow {MN} = \left( { - m - 2n + 2\,;\,\,\sqrt 3 m\,;\,\,2n - 2m} \right).\)
Đường thẳng \[MN\] là đường vuông góc chung của \(A'C\) và \(BC'\) nên
\(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {MN} \cdot \overrightarrow {CA'} = 0}\\{\overrightarrow {MN} \cdot \overrightarrow {BC'} = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 4m + 2n = - 1}\\{ - m + 4n = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = \frac{2}{5}}\\{n = \frac{3}{5}}\end{array}} \right.} \right.} \right.\)\( \Rightarrow \frac{{BN}}{{BC'}} = n = \frac{3}{5} \Rightarrow \frac{{NB}}{{NC'}} = \frac{3}{2}.\)
Đáp án: \[{\bf{1}},{\bf{5}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(F\left( x \right) = \int f \left( x \right){\rm{d}}x = \left\{ {\begin{array}{*{20}{l}}{{x^2} + 2x + {C_1}}&{{\rm{ khi }}x \ge 1}\\{{x^3} + x + {C_2}}&{{\rm{ khi }}x < 1}\end{array}} \right.\).
Theo bài ra, ta có \(F\left( 0 \right) = 2 \Rightarrow {C_2} = 2\).
Hàm số \(F\left( x \right)\) liên tục nên \(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right)\)
\[ \Leftrightarrow 3 + {C_1} = 4 \Leftrightarrow {C_1} = 1 \Rightarrow F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{x^2} + 2x + 1{\rm{ khi }}x \ge 1}\\{{x^3} + x + 2{\rm{ }}\,\,{\rm{khi }}x < 1}\end{array}} \right.\].
Vậy \(F\left( { - 1} \right) + 2F\left( 2 \right) = {\left( { - 1} \right)^3} + \left( { - 1} \right) + 2 + 2 \cdot \left( {{2^2} + 2 \cdot 2 + 1} \right) = 18.\)
Đáp án: 18.
Lời giải
Giả sử cạnh của hình lập phương là \(a > 0.\)
Gọi \(N\) là trung điểm đoạn thẳng \(BB'.\)
Khi đó, \(MN\,{\rm{//}}\,BC'\) nên \(\left( {\widehat {AM\,;\,\,BC'}} \right) = (\widehat {AM\,;\,MN}).\)
Xét \(\Delta A'B'M\) vuông tại \(B'\), ta có
\(A'M = \sqrt {A'{{B'}^{\prime 2}} + B'{M^2}} = \sqrt {{a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt 5 }}{2}.\)Xét \(\Delta AA'M\) vuông tại \(A'\), ta có \(AM = \sqrt {A{{A'}^2} + A'{M^2}} = \sqrt {{a^2} + \frac{{5{a^2}}}{4}} = \frac{{3a}}{2}.\)
Có \[AN = A'M = \frac{{a\sqrt 5 }}{2}\,;\,\,MN = \frac{{BC'}}{2} = \frac{{a\sqrt 2 }}{2}.\]
Trong tam giác \[AMN\] ta có
\(\cos \widehat {AMN} = \frac{{M{A^2} + M{N^2} - A{N^2}}}{{2MA \cdot MN}} = \frac{{\frac{{9{a^2}}}{4} + \frac{{2{a^2}}}{4} - \frac{{5{a^2}}}{4}}}{{2 \cdot \frac{{3a}}{2} \cdot \frac{{a\sqrt 2 }}{2}}} = \frac{{6{a^2}}}{4} \cdot \frac{4}{{6{a^2}\sqrt 2 }} = \frac{1}{{\sqrt 2 }}.\)
Suy ra \(\widehat {AMN} = 45^\circ .\) Vậy \[\left( {AM,\,\,BC'} \right) = \left( {AM,\,\,MN} \right) = \widehat {AMN} = 45^\circ .\] Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận