Câu hỏi:
25/06/2024 91Đọc đoạn trích sau đây và trả lời câu hỏi:
Hồn Trương Ba: (sau một lát) Ông Đế Thích ạ, tôi không thể tiếp tục mang thân anh hàng thịt được nữa, không thể được!
Đế Thích: Sao thế? Có gì không ổn đâu!
Hồn Trương Ba: Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.
Đế Thích: Thế ông ngỡ tất cả mọi người đều được là mình toàn vẹn ư? Ngay cả tôi đây. Ở bên ngoài, tôi đâu có được sống theo những điều tôi nghĩ bên trong. Mà cả Ngọc Hoàng nữa, chính người lắm khi cũng phải khuôn ép mình cho xứng với danh vị Ngọc Hoàng. Dưới đất, trên trời đều thế cả, nữa là ông. Ông bị gạch tên khỏi sổ Nam Tào. Thân thể thật của ông đã tan rữa trong bùn đất, còn chút hình thù gì của ông đâu!
Hồn Trương Ba: Sống nhờ vào đồ đạc, của cải người khác, đã là chuyện không nên, đằng này đến cái thân tôi cũng phải sống nhờ anh hàng thịt. Ông chỉ nghĩ đơn giản là cho tôi sống, nhưng sống như thế nào thì ông chẳng cần biết!
(Hồn Trương Ba, da hàng thịt – Lưu Quang Vũ)
Câu nói “Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.” của hồn Trương Ba trong đoạn trích trên có ý nghĩa gì?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!