Câu hỏi:
25/06/2024 326Quảng cáo
Trả lời:
Ta nhận thấy chỗ trống thứ nhất có ít sự lựa chọn hơn nên ta tìm từ ngữ thích hợp để điền vào chỗ trống thứ nhất trước.
+ Minh họa: làm rõ thêm, sinh động thêm nội dung muốn trình bày, bằng hình vẽ hoặc những hình thức dễ thấy, dễ hiểu.
+ Khắc họa: miêu tả bằng lời văn một cách đậm nét, rõ ràng, khiến cho nổi bật lên như chạm, vẽ.
Đặt trong nội dung về câu: “Số tranh mang tính chất ______ đơn thuần rất ít”, ta chọn được từ thích hợp để điền vào chỗ trống thứ nhất là “minh họa”.
→ Loại 2 phương án C và D.
Chỗ trống thứ hai với hai từ “quan điểm” và “ý tưởng”:
+ Quan điểm: cách nhìn, cách suy nghĩ.
+ Ý tưởng: những ý nghĩ chưa trọn vẹn, cái bám vào để triển khai một việc gì đó.
Đặt trong nội dung về câu: “những _______ của nhà văn chỉ là cái cớ cho hội họa mà thôi” ta chọn từ thích hợp là “ý tưởng” vì đó chính là cái cớ, cái bám vào để tạo nên những tác phẩm hội họa. Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\overrightarrow {{n_P}} = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}} = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)
\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)
\( \Rightarrow \overrightarrow {MA} = (2; - 1;2) \Rightarrow MA = 3\)
Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)
\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)
\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)
Lời giải
Chọn hệ trục tọa độ như hình vẽ (tâm của hình tròn)
Hai Elip lần lượt có phương trình là \(\left( {{E_1}} \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) và \(\left( {{E_2}} \right):\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1.\)Tọa độ giao điểm của hai Elip trong góc phần tư thứ nhất là nghiệm phương trình \({x^2} + \frac{{1 - \frac{{{x^2}}}{4}}}{4} = 1 \Leftrightarrow {x^2} = \frac{4}{5} \Rightarrow x = \frac{{2\sqrt 5 }}{5}.\)
Diện tích hình phẳng cần tìm là:
\[S = \pi \cdot {2^2} - \pi \cdot 2 \cdot 1 - 8\int\limits_2^{\frac{{2\sqrt 5 }}{5}} {\left( {2\sqrt {1 - {x^2}} - \sqrt {1 - \frac{{{x^2}}}{4}} } \right)} \,{\rm{d}}x \approx 3,7.\] Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận