Trong không gian \[Oxyz,\] cho mặt phẳng \(\left( Q \right)\) song song với mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0.\) Biết mặt phẳng \(\left( Q \right)\) cắt mặt cầu \(\left( S \right):{x^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 25\) theo một đường tròn có bán kính \(r = 3.\) Khi đó mặt phẳng \(\left( Q \right)\) có phương trình là
A. \(x - y + 2z - 7 = 0.\)
B. \(2x - 2y + z - 7 = 0.\)
Quảng cáo
Trả lời:
Do \(\left( Q \right)\,{\rm{//}}\,\left( P \right):2x - 2y + z - 7 = 0\), suy ra \(\left( Q \right):2x - 2y + z + m = 0,\,\,\left( {m \ne - 7} \right).\)
Ta có \(\left( S \right):{x^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 25\) có tâm \(I\left( {0\,;\,\,2\,;\,\, - 1} \right)\) bán kính \(R = 5.\)
Gọi \(h = d\left( {I;\,\,\left( Q \right)} \right) = \frac{{\left| {2 \cdot 0 - 2 \cdot 2 - 1 + m} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{{\left| {m - 5} \right|}}{3}.\)
Do \((Q)\) cắt mặt cầu \((S)\) theo một đường tròn có bán kính \(r = 3\), suy ra \({R^2} = {r^2} + {h^2}\)
\( \Leftrightarrow 25 = 9 + \frac{{{{\left( {m - 5} \right)}^2}}}{9} \Leftrightarrow {\left( {m - 5} \right)^2} = 144 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m - 5 = 12}\\{m - 5 = - 12}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 17}\\{m = - 7{\rm{ (loai) }}}\end{array}} \right.} \right.\)
Vậy mặt phẳng \(\left( Q \right)\) có phương trình là \(2x - 2y + z + 17 = 0.\) Chọn D.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).
Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)
TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m > 0\) nên nhận \({m_2} = 5.\)
TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m < 0\) nên nhận \({m_1} = - 2.\)
Vậy \({m_1} + {m_2} = 3.\) Chọn A.
Câu 2
Lời giải
Miền Bắc không có một mùa khô sâu sắc kéo dài. Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 140 triệu đồng và 180 triệu đồng.
B. 180 triệu đồng và 140 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.