Cường độ một trận động đất được cho bởi công thức \(M = \log A - \log {A_0},\) với \[A\] là biên độ rung chấn tối đa là \({A_0}\) là hằng số. Đầu thế kỷ XX, một trận động đất ở San Francisco có cường độ đo được là 8 độ Richter. Trong cùng năm đó, trận động đất khác ở Nhật Bản có cường độ đo được 6 độ Richter. Hỏi trận động đất ở San Francisco có biên độ gấp bao nhiêu lần biên độ trận động đất ở Nhật Bản?
Cường độ một trận động đất được cho bởi công thức \(M = \log A - \log {A_0},\) với \[A\] là biên độ rung chấn tối đa là \({A_0}\) là hằng số. Đầu thế kỷ XX, một trận động đất ở San Francisco có cường độ đo được là 8 độ Richter. Trong cùng năm đó, trận động đất khác ở Nhật Bản có cường độ đo được 6 độ Richter. Hỏi trận động đất ở San Francisco có biên độ gấp bao nhiêu lần biên độ trận động đất ở Nhật Bản?
Quảng cáo
Trả lời:
Gọi \[A\] là biên độ trận động đất ở San Francisco và \[B\] là biên độ trận động đất ở Nhật Bản.
Ta có \(\left\{ {\begin{array}{*{20}{l}}{\log A - \log {A_0} = 8 \Leftrightarrow \log \frac{A}{{{A_0}}} = 8}\\{\log B - \log {A_0} = 6 \Leftrightarrow \log \frac{B}{{{A_0}}} = 6}\end{array}} \right..\)
Suy ra \(\log \frac{A}{{{A_0}}} - \log \frac{B}{{{A_0}}} = 8 - 6 \Leftrightarrow \log \left( {\frac{A}{{{A_0}}}:\frac{B}{{{A_0}}}} \right) = 2 \Leftrightarrow \log \frac{A}{B} = 2 \Leftrightarrow \frac{A}{B} = {10^2} = 100.\)
Đáp án: 100.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).
Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)
TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m > 0\) nên nhận \({m_2} = 5.\)
TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m < 0\) nên nhận \({m_1} = - 2.\)
Vậy \({m_1} + {m_2} = 3.\) Chọn A.
Câu 2
Lời giải
Miền Bắc không có một mùa khô sâu sắc kéo dài. Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 140 triệu đồng và 180 triệu đồng.
B. 180 triệu đồng và 140 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.