Câu hỏi:
13/07/2024 97Hai bạn Minh và Huy chơi một trò chơi như sau: Minh chọn ngẫu nhiên một số trong tập hợp {5; 6; 7; 8; 9; 10}; Huy chọn ngẫu nhiên một số trong tập hợp {4; 5; 7; 8; 9; 11}. Bạn nào chọn được số lớn hơn sẽ là người thắng cuộc. Nếu hai số chọn được bằng nhau thì kết quả là hoà. Tính xác suất của biến cố sau:
A: “Bạn Minh thắng”;
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phép thử là Minh chọn ngẫu nhiên một số trong tập hợp {5; 6; 7; 8; 9; 10}; Huy chọn ngẫu nhiên một số trong tập hợp {4; 5; 7; 8; 9; 11}.
Kết quả của phép thử là một cặp số (a, b), trong đó a và b tương ứng là số Minh và Huy chọn.
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Huy Minh |
4 |
5 |
7 |
8 |
9 |
11 |
5 |
(5, 4) |
(5, 5) |
(5, 7) |
(5, 8) |
(5, 9) |
(5, 11) |
6 |
(6, 4) |
(6, 5) |
(6, 7) |
(6, 8) |
(6, 9) |
(6, 11) |
7 |
(7, 4) |
(7, 5) |
(7, 7) |
(7, 8) |
(7, 9) |
(7, 11) |
8 |
(8, 4) |
(8, 5) |
(8, 7) |
(8, 8) |
(8, 9) |
(8, 11) |
9 |
(9, 4) |
(9, 5) |
(9, 7) |
(9, 8) |
(9, 9) |
(9, 11) |
10 |
(10, 4) |
(10, 5) |
(10, 7) |
(10, 8) |
(10, 9) |
(10, 11) |
Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 36 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(5, 4); (5, 5); (5, 7); …; (10, 9); (10, 11)}.
Tập Ω có 36 phần tử.
Vì Minh và Huy chọn ngẫu nhiên một số nên các kết quả có thể xảy ra ở trên là đồng khả năng.
Có 17 kết quả thuận lợi của biến cố A là: (5, 4); (6, 4); (6, 5); (7, 4); (7, 5); (8, 4); (8, 5); (8, 7); (9, 4); (9, 5); (9, 7); (9, 8); (10, 4); (10, 5); (10, 7); (10, 8); (10, 9). Do đó,
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một túi đựng 4 viên bi có cùng khối lượng và kích thước, được đánh số 1; 2; 3; 4. Lấy ngẫu nhiên hai viên bi từ trong túi. Xác suất để tích hai số ghi trên hai viên bi lớn hơn 3 là
A.
B.
C.
D.
Câu 2:
Có hai túi I và II. Túi I chứa 3 tấm thẻ, đánh số 2; 3; 4. Túi II chứa 2 tấm thẻ, đánh số 5; 6. Từ mỗi túi I và II, rút ngẫu nhiên một tấm thẻ. Tính xác suất của các biến cố sau:
A: “Hai số ghi trên hai tấm thẻ chênh nhau 2 đơn vị”;
B: “Hai số ghi trên hai tấm thẻ chênh nhau lớn hơn 2 đơn vị̣”;
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”;
D: “Tổng hai số ghi trên hai tấm thẻ là một số nguyên tố”.
Câu 3:
Gieo đồng thời hai con xúc xắc cân đối, đồng chất. Xác suất để “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10” là
A.
B.
C.
D.
Câu 4:
Có hai túi I và II. Túi I chứa 4 tấm thẻ, đánh số 1; 2; 3; 4. Túi II chứa 5 tấm thẻ, đánh số 1; 2; 3; 4; 5. Rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II. Xác suất để cả hai tấm thẻ rút ra đều ghi số chẵn là
A.
B.
C.
D.
Câu 5:
Hai bạn Minh và Huy chơi một trò chơi như sau: Minh chọn ngẫu nhiên một số trong tập hợp {5; 6; 7; 8; 9; 10}; Huy chọn ngẫu nhiên một số trong tập hợp {4; 5; 7; 8; 9; 11}. Bạn nào chọn được số lớn hơn sẽ là người thắng cuộc. Nếu hai số chọn được bằng nhau thì kết quả là hoà. Tính xác suất của biến cố sau:
Câu 6:
Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất của các biến cố sau:
E: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 11”;
F: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 hoặc 9”;
G: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 6”.
về câu hỏi!