Giải SGK Toán 9 KNTT Bài tập cuối chương 8 có đáp án
65 người thi tuần này 4.6 244 lượt thi 7 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Phép thử là gieo đồng thời hai con xúc xắc cân đối và đồng chất.
Kết quả của phép thử là (a, b), trong đó a và b tương ứng là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai.
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Xúc xắc thứ hai Xúc xắc thứ nhất |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
(1, 5) |
(1, 6) |
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
(2, 5) |
(2, 6) |
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
(3, 5) |
(3, 6) |
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
(4, 5) |
(4, 6) |
5 |
(5, 1) |
(5, 2) |
(5, 3) |
(5, 4) |
(5, 5) |
(5, 6) |
6 |
(6, 1) |
(6, 2) |
(6, 3) |
(6, 4) |
(6, 5) |
(6, 6) |
Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 36 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(1, 1); (1, 2); (1, 3); …; (5, 6); (6, 6)}.
Tập Ω có 36 phần tử.
Vì gieo đồng thời hai con xúc xắc cân đối, đồng chất nên các kết quả có thể xảy ra là đồng khả năng.
Có 6 kết quả thuận lợi của biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10” là: (4, 6); (5, 5); (5, 6); (6, 4); (6, 5); (6, 6).
Do đó,
Lời giải
Đáp án đúng là: A
Phép thử là rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II.
Kết quả của phép thử là (a, b), trong đó a và b tương ứng là số ghi trên tấm thẻ rút từ túi I và túi II.
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Túi II Túi I |
1 |
2 |
3 |
4 |
5 |
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
(1, 5) |
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
(2, 5) |
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
(3, 5) |
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
(4, 5) |
Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 20 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(1, 1); (1, 2); (1, 3); …; (4, 4); (4, 5)}.
Tập Ω có 20 phần tử.
Vì rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II nên các kết quả có thể xảy ra ở trên là đồng khả năng.
Có 4 kết quả thuận lợi của biến cố A: “Cả hai tấm thẻ rút ra đều ghi số chẵn” là: (2, 2); (2, 4); (4, 2); (4, 4). Do đó,
Lời giải
Đáp án đúng là: B
Phép thử là lấy ngẫu nhiên hai viên bi từ trong túi.
Kết quả của phép thử là (a, b), trong đó a và b tương ứng là các số trên hai viên bi trong túi. Vì lấy đồng thời 2 viên bi nên a ≠ b.
Do đó, không gian mẫu là: Ω = {(1, 2); (1, 3); (1, 4); (2, 3); (2, 4); (3, 4)}.
Không gian mẫu Ω có 6 phần tử.
Vì lấy ngẫu nhiên hai viên bi từ trong túi nên các kết quả có thể xảy ra ở trên là đồng khả năng.
Có 4 kết quả thuận lợi của biến cố A: “Tích hai số ghi trên hai viên bi lớn hơn 3” là: (1, 4); (2, 3); (2, 4); (3, 4). Do đó,
Lời giải
Phép thử là rút ngẫu nhiên một thẻ từ mỗi túi I và II.
Kết quả của phép thử là một cặp số (a, b), trong đó a và b tương ứng là số ghi trên tấm thẻ được lấy từ túi I và túi II.
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Túi II Túi I |
5 |
6 |
2 |
(2, 5) |
(2, 6) |
3 |
(3, 5) |
(3, 6) |
4 |
(4, 5) |
(4, 6) |
Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 6 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(2, 5); (2, 6); (3, 5); (3, 6); (4, 5); (4, 6)}.
Tập Ω có 6 phần tử.
Vì rút ngẫu nhiên một tấm thẻ từ mỗi túi I và II nên các kết quả có thể xảy ra ở trên là đồng khả năng.
⦁ Có 2 kết quả thuận lợi của biến cố A là: (3, 5); (4, 6). Do đó,
⦁ Có 3 kết quả thuận lợi của biến cố B là: (2, 5); (2, 6); (3, 6). Do đó,
⦁ Có 5 kết quả thuận lợi của biến cố C là: (2, 5); (2, 6); (3, 6); (4, 5); (4, 6). Do đó,
⦁ Có 1 kết quả thuận lợi của biến cố D là: (2, 5). Do đó,
Lời giải
Phép thử là gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II.
Kết quả của phép thử là (a, b), trong đó a và b tương ứng là số chấm xuất hiện trên con xúc xắc I và con xúc xắc II.
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Xúc xắc II Xúc xắc I |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
(1, 5) |
(1, 6) |
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
(2, 5) |
(2, 6) |
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
(3, 5) |
(3, 6) |
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
(4, 5) |
(4, 6) |
5 |
(5, 1) |
(5, 2) |
(5, 3) |
(5, 4) |
(5, 5) |
(5, 6) |
6 |
(6, 1) |
(6, 2) |
(6, 3) |
(6, 4) |
(6, 5) |
(6, 6) |
Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 36 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(1, 1); (1, 2); (1, 3); …; (6, 5); (6, 6)}.
Tập Ω có 36 phần tử.
Vì gieo đồng thời hai con xúc xắc cân đối, đồng chất nên các kết quả có thể xảy ra là đồng khả năng.
⦁ Có 2 kết quả thuận lợi của biến cố E là: (5, 6); (6, 5). Do đó,
⦁ Có 9 kết quả thuận lợi của biến cố F là: (2, 6); (3, 5); (3, 6); (4, 4); (4, 5); (5, 3); (5, 4); (6, 2); (6, 3). Do đó,
⦁ Có 10 kết quả thuận lợi của biến cố G là: (1, 1); (1, 2); (1, 3); (1, 4); (2, 1); (2, 2); (2, 3); (3, 1); (3, 2); (4, 1). Do đó,
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
49 Đánh giá
50%
40%
0%
0%
0%