Giải VTH Toán 9 KNTT Bài 9. Biến đổi đơn giản và rút gọn Biểu thức chứa căn thức bậc hai đáp án
57 người thi tuần này 4.6 0.9 K lượt thi 10 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
36 bài tập Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
19 bài tập Toán 9 Cánh diều Bài 3. Hình cầu có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 3. Hình cầu có đáp án
6 bài tập Ứng dụng của mặt cầu trong thực tiễn (có lời giải)
3 bài tập Tính bán kính , diện tích, thể tích của mặt cầu (có lời giải)
20 bài tập Toán 9 Cánh diều Bài 2. Hình nón có đáp án
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Ta có:
• \(\sqrt {\left( { - 5} \right).2} = \sqrt { - 5.2} .\)
• \(\sqrt {{{\left( { - 5} \right)}^2}.2} = \sqrt {{{\left( { - 5} \right)}^2}} .\sqrt 2 = \left| { - 5} \right|.\sqrt 2 = 5\sqrt 2 .\)
• \[ - \sqrt {{5^2}.2} = - \left( {\sqrt {{5^2}} .\sqrt 2 } \right) = - \left| 5 \right|\sqrt 2 = - 5\sqrt 2 .\]
• \(\sqrt {{{\left| 5 \right|}^2}.2} = \sqrt {{5^2}} .\sqrt 2 = \left| 5 \right|\sqrt 2 = 5\sqrt 2 .\)
Vậy phép biến đổi đúng là \( - 5\sqrt 2 = - \sqrt {{5^2}.2} .\)
Lời giải
Đáp án đúng là: D
Muốn trục căn thức ở mẫu của biểu thức \(\frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 2 - 1}}\) ta cần nhân cả tử và mẫu của biểu thức đó với \(\left( {\sqrt 2 + 1} \right).\)
Lời giải
a) \(\sqrt {52} = \sqrt {4.13} = 2\sqrt {13} .\)
b) \(\sqrt {27a} = \sqrt {9.3a} = 3\sqrt {3a} \) (do a ≥ 0).
c) \(\sqrt {50\sqrt 2 + 100} = \sqrt {25\left( {2\sqrt 2 + 4} \right)} = 5\sqrt {2\sqrt 2 + 4} .\)
d) \(\sqrt {9\sqrt 5 - 18} = \sqrt {9\left( {\sqrt 5 - 2} \right)} = 3\sqrt {\sqrt 5 - 2} .\)
Lời giải
a) \(4\sqrt 3 = \sqrt {{4^2}.3} = \sqrt {16.3} = \sqrt {48} .\)
b) \( - 2\sqrt 7 = - \sqrt {{2^2}.7} = - \sqrt {4.7} = - \sqrt {28} .\)
c) \(4\sqrt {\frac{{15}}{2}} = \sqrt {{4^2}.\frac{{15}}{2}} = \sqrt {16.\frac{{15}}{2}} = \sqrt {120} .\)
d) \[ - 5\sqrt {\frac{{16}}{5}} = - \sqrt {{5^2}.\frac{{16}}{5}} = - \sqrt {25.\frac{{16}}{5}} = - \sqrt {80} .\]
Lời giải
a) \(2a.\sqrt {\frac{3}{5}} = 2a.\sqrt {\frac{{3.5}}{{{5^2}}}} = 2a.\frac{{\sqrt {15} }}{{\sqrt {25} }} = \frac{{2a\sqrt {15} }}{5}.\)
b) \[ - 3x.\sqrt {\frac{5}{x}} = - 3x.\sqrt {\frac{{5.x}}{{{x^2}}}} = - 3x.\frac{{\sqrt {5x} }}{x} = - 3\sqrt {5x} .\]
c) \( - \sqrt {\frac{{3a}}{b}} = - \sqrt {\frac{{3ab}}{{{b^2}}}} = \frac{{ - \sqrt {3ab} }}{b}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.