Giải VTH Toán 9 KNTT Bài 9. Biến đổi đơn giản và rút gọn Biểu thức chứa căn thức bậc hai đáp án
53 người thi tuần này 4.6 398 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Ta có:
• \(\sqrt {\left( { - 5} \right).2} = \sqrt { - 5.2} .\)
• \(\sqrt {{{\left( { - 5} \right)}^2}.2} = \sqrt {{{\left( { - 5} \right)}^2}} .\sqrt 2 = \left| { - 5} \right|.\sqrt 2 = 5\sqrt 2 .\)
• \[ - \sqrt {{5^2}.2} = - \left( {\sqrt {{5^2}} .\sqrt 2 } \right) = - \left| 5 \right|\sqrt 2 = - 5\sqrt 2 .\]
• \(\sqrt {{{\left| 5 \right|}^2}.2} = \sqrt {{5^2}} .\sqrt 2 = \left| 5 \right|\sqrt 2 = 5\sqrt 2 .\)
Vậy phép biến đổi đúng là \( - 5\sqrt 2 = - \sqrt {{5^2}.2} .\)
Lời giải
Đáp án đúng là: D
Muốn trục căn thức ở mẫu của biểu thức \(\frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 2 - 1}}\) ta cần nhân cả tử và mẫu của biểu thức đó với \(\left( {\sqrt 2 + 1} \right).\)
Lời giải
a) \(\sqrt {52} = \sqrt {4.13} = 2\sqrt {13} .\)
b) \(\sqrt {27a} = \sqrt {9.3a} = 3\sqrt {3a} \) (do a ≥ 0).
c) \(\sqrt {50\sqrt 2 + 100} = \sqrt {25\left( {2\sqrt 2 + 4} \right)} = 5\sqrt {2\sqrt 2 + 4} .\)
d) \(\sqrt {9\sqrt 5 - 18} = \sqrt {9\left( {\sqrt 5 - 2} \right)} = 3\sqrt {\sqrt 5 - 2} .\)
Lời giải
a) \(4\sqrt 3 = \sqrt {{4^2}.3} = \sqrt {16.3} = \sqrt {48} .\)
b) \( - 2\sqrt 7 = - \sqrt {{2^2}.7} = - \sqrt {4.7} = - \sqrt {28} .\)
c) \(4\sqrt {\frac{{15}}{2}} = \sqrt {{4^2}.\frac{{15}}{2}} = \sqrt {16.\frac{{15}}{2}} = \sqrt {120} .\)
d) \[ - 5\sqrt {\frac{{16}}{5}} = - \sqrt {{5^2}.\frac{{16}}{5}} = - \sqrt {25.\frac{{16}}{5}} = - \sqrt {80} .\]
Lời giải
a) \(2a.\sqrt {\frac{3}{5}} = 2a.\sqrt {\frac{{3.5}}{{{5^2}}}} = 2a.\frac{{\sqrt {15} }}{{\sqrt {25} }} = \frac{{2a\sqrt {15} }}{5}.\)
b) \[ - 3x.\sqrt {\frac{5}{x}} = - 3x.\sqrt {\frac{{5.x}}{{{x^2}}}} = - 3x.\frac{{\sqrt {5x} }}{x} = - 3\sqrt {5x} .\]
c) \( - \sqrt {\frac{{3a}}{b}} = - \sqrt {\frac{{3ab}}{{{b^2}}}} = \frac{{ - \sqrt {3ab} }}{b}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
80 Đánh giá
50%
40%
0%
0%
0%