Giải VTH Toán 9 KNTT Bài 8. Khai căn bậc hai với phép nhân và phép chia đáp án
28 người thi tuần này 4.6 459 lượt thi 10 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Ta có \(\sqrt {{a^2}{b^2}} = \sqrt {{a^2}} .\sqrt {{b^2}} = \left| a \right|\left| b \right| = \left| {ab} \right|\) (a, b tùy ý).
Do đó, khẳng định (2) và (4) là khẳng định không đúng.
Vậy số khẳng định đúng là 2.
Lời giải
Đáp án đúng là: C
Ta có: \(\sqrt { - 5{a^3}} = \sqrt { - 5a.{a^2}} = \sqrt { - 5a} .\sqrt {{a^2}} = \left| a \right|\sqrt { - 5a} \)
• Với a < 0, \(\left| a \right|\sqrt { - 5a} = - a\sqrt { - 5a} .\)
• Với a > 0, \(\left| a \right|\sqrt { - 5a} = a\sqrt { - 5a} .\)
Vậy khẳng định \(\sqrt { - 5{a^3}} = - a\sqrt { - 5a} ,\) (a < 0) là khẳng định đúng.
Lời giải
Đáp án đúng là: D
Ta có: \(\sqrt {64{a^4}{b^6}} = \sqrt {64} .\sqrt {{a^4}} .\sqrt {{b^6}} = \sqrt {{8^2}} .\sqrt {{{\left( {{a^2}} \right)}^2}} .\sqrt {{{\left( {{b^3}} \right)}^2}} \)
\[ = \left| 8 \right|.\left| {{a^2}} \right|.\left| {{b^3}} \right| = 8{a^2}\left| {{b^3}} \right|.\]
Vậy khẳng định đúng là \(\sqrt {64{a^4}{b^6}} = 8{a^2}{\left( { - b} \right)^3}.\)
Lời giải
a) \(\sqrt {12} .\left( {\sqrt {12} + \sqrt 3 } \right) = \sqrt {12} .\sqrt {12} + \sqrt {12} .\sqrt 3 \)
\( = \sqrt {{{12}^2}} + \sqrt {36} = 12 + 6 = 18.\)
b) \(\sqrt 8 .\left( {\sqrt {50} - \sqrt 2 } \right) = \sqrt 8 .\sqrt {50} - \sqrt 8 .\sqrt 2 \)
\( = \sqrt {400} - \sqrt {16} = 20 - 4 = 16.\)
c) \[{\left( {\sqrt 3 + \sqrt 2 } \right)^2} - 2\sqrt 6 \]
\[ = {\left( {\sqrt 3 } \right)^2} + {\left( {\sqrt 2 } \right)^2} + 2\sqrt 3 .\sqrt 2 - 2\sqrt 6 = 3 + 2 = 5.\]
Lời giải
\(\sqrt {2\left( {{a^2} - {b^2}} \right)} \cdot \sqrt {\frac{3}{{a + b}}} = \sqrt {2\left( {{a^2} - {b^2}} \right) \cdot \frac{3}{{a + b}}} \)
\( = \sqrt {2\left( {a - b} \right)\left( {a + b} \right) \cdot \frac{3}{{a + b}}} = \sqrt {6\left( {a - b} \right)} .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.