Giải VTH Toán 9 KNTT Bài 12. Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng có đáp án
30 người thi tuần này 4.6 250 lượt thi 13 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: D
Xét tam giác PQR vuông tại Q, ta có:
\(PQ = PR.\sin R = PR.\cos P,\) \(QR = PR.\sin P = PR.\cos R.\)
Lời giải
Đáp án đúng là: C
Xét tam giác PQR vuông tại Q, ta có:
\(QR = PQ.\tan P = PQ.\cot R,\) \(PQ = QR.\tan R = QR.\cot P.\)
Lời giải
Đáp án đúng là: D
Xét tam giác MNP vuông tại N, ta có:
\(MN = MP.\cos M = 5.\cos 30^\circ = 5.\frac{{\sqrt 3 }}{2} = \frac{{5\sqrt 3 }}{2}.\)
Vậy \(MN = \frac{{5\sqrt 3 }}{2}.\)
Lời giải
Đáp án đúng là: C
Xét tam giác MNP vuông tại N, ta có: \(\widehat P = 60^\circ \) suy ra \(\widehat M = 90^\circ - \widehat P = 90^\circ - 60^\circ = 30^\circ .\)
• \(MN = MP.\cos M = MP.\sin P\).
Suy ra \(MN = 17.\sin 60^\circ = \frac{{17\sqrt 3 }}{2};\)
• \(NP = MN.\tan M = MN.\cot P\).
Suy ra \(NP = MN.\cot 60^\circ = \frac{{17\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{3} = \frac{{17}}{2} = 8,5\) hay \(NP = MN.\tan 30^\circ .\)
Vậy khẳng định C là khẳng định sai.
Lời giải
a)

Theo định lí Pythagore, ta có \({c^2} = {21^2} - {18^2} = 117\) suy ra \(c = \sqrt {117} = 3\sqrt {13} \approx 11.\)
Ta có \(\sin B = \frac{{AC}}{{BC}} = \frac{{18}}{{21}} = \frac{6}{7}\) nên dùng MTCT ta có \(\widehat B \approx 59^\circ .\)
Do đó \(\widehat C = 90^\circ - \widehat B \approx 90^\circ - 59^\circ \approx 31^\circ .\)
b)

Ta có \(\widehat B = 90^\circ - \widehat C = 90^\circ - 30^\circ = 0^\circ ,\) \[\cos C = \cos 30^\circ = \frac{{AC}}{{BC}} = \frac{b}{a} = \frac{{\sqrt 3 }}{2}\] nên
\(a = \frac{{2b}}{{\sqrt 3 }} = \frac{{2.10}}{{\sqrt 3 }} = \frac{{20\sqrt 3 }}{3} \approx 11,\) \(c = b.\tan C = 10.\tan 30^\circ = \frac{{10\sqrt 3 }}{3} \approx 6.\)
c)

Ta có a2 = b2 + c2 = 32 + 52 = 34 nên \(a = \sqrt {34} \approx 6,\)
\(\tan B = \frac{b}{c} = \frac{3}{5},\) dùng MTCT tính được \(\widehat B \approx 31^\circ .\)
Do đó \(\widehat C = 90^\circ - \widehat B \approx 90^\circ - 31^\circ \approx 59^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
50 Đánh giá
50%
40%
0%
0%
0%