Giải SGK Toán 9 KNTT Luyện tập chung có đáp án
66 người thi tuần này 4.6 1 K lượt thi 8 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a)
• Thay x = 2; y = 0 vào phương trình (1), ta có:
–2x + 5y = (–2) . 2 + 5 . 0 = (−4) + 0 = −4 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (1).
• Thay x = 1; y = –1 vào phương trình (1), ta có:
–2x + 5y = (–2) . 1 + 5 . (–1) = (–2) – 5 = –7 ≠ 7 nên (1; –1) không phải là nghiệm của phương trình (1).
• Thay x = –1; y = 1 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–1) + 5 . 1 = 2 + 5 = 7 nên (–1; 1) là nghiệm của phương trình (1).
• Thay x = –1; y = 6 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–1) + 5 . 6 = 2 + 30 = 32 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (1).
• Thay x = 4; y = 3 vào phương trình (1), ta có:
–2x + 5y = (–2) . 4 + 5 . 3 = –8 + 15 = 7 nên (4; 3) là nghiệm của phương trình (1).
• Thay x = –2; y = –5 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–2) + 5 . (–5) = 4 – 25 = –21 ≠ 7 nên (–2; –5) không phải là nghiệm của phương trình (1).
Vậy cặp số là nghiệm của phương trình (1) là (–1; 1) và (4; 3).
Lời giải
b)
• Thay x = 2; y = 0 vào phương trình (2), ta có:
4x − 3y = 4 . 2 − 3 . 0 = 8 − 0 = 8 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (2).
• Thay x = 1; y = −1 vào phương trình (2), ta có:
4x − 3y = 4 . 1 − 3 . (−1) = 4 + 3 = 7 nên (1; −1) là nghiệm của phương trình (2).
• Thay x = –1; y = 1 vào phương trình (2), ta có:
4x − 3y = 4 . (–1) − 3 . 1 = −4 − 3 = −7 ≠ 7 nên (−1; 1) không phải là nghiệm của phương trình (2).
• Thay x = −1; y = 6 vào phương trình (2), ta có:
4x − 3y = 4 . (−1) − 3 . 6 = −4 – 18 = –22 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (2).
• Thay x = 4; y = 3 vào phương trình (2), ta có:
4x − 3y = 4 . 4 − 3 . 3 = 16 – 9 = 7 nên (4; 3) là nghiệm của phương trình (2).
• Thay x = –2; y = –5 vào phương trình (2), ta có:
4x − 3y = 4 . (–2) − 3 . (–5) = –8 + 15 = 7 nên (–2; –5) là nghiệm của phương trình (2).
Vậy cặp số là nghiệm của phương trình (2) là (1; −1), (4; 3) và (–2; –5).
Lời giải
c) Ta thấy cặp số (4; 3) là nghiệm chung của phương trình (1) và phương trình (2).
Do đó, nghiệm của hệ gồm phương trình (1) và phương trình (2) là cặp số (4; 3).
Lời giải
a) Từ phương trình thứ nhất ta có y = 2x – 1. Thế vào phương trình thứ hai, ta được
x – 2(2x – 1) = –1, tức là x – 4x + 2 = –1, suy ra –3x = –3 hay x = 1.
Từ đó y = 2 . 1 – 1 = 1.
Vậy hệ phương trình đã cho có nghiệm là (1; 1).
Lời giải
b) Chia hai vế của phương trình thứ nhất cho 0,5 và chia hai vế của phương trình thứ hai cho 1,2 ta được:
Từ phương trình thứ nhất ta có y = x – 1. (1)
Thế vào phương trình thứ hai, ta được
x – (x – 1) = 1, tức là x – x + 1 = 1, suy ra 0x = 0. (2)
Ta thấy mọi giá trị của x đều thỏa mãn hệ thức (2).
Với mọi giá trị tùy ý của x, giá trị tương ứng của y được tính bởi (1).
Vậy hệ phương trình đã cho có nghiệm là (x; x – 1) với x ∈ ℝ tùy ý.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.