Giải VTH Toán 9 KNTT Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác có đáp án
40 người thi tuần này 4.6 352 lượt thi 11 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Tâm đường tròn ngoại tiếp một tam giác là giao điểm của ba đường trung trực.
Tâm đường tròn nội tiếp một tam giác là giao điểm của ba đường phân giác.
Tâm đường tròn nội tiếp một tam giác đều là trọng tâm của tam giác đó.
Tâm đường tròn ngoại tiếp một tam giác vuông là trung điểm của cạnh huyền.
Lời giải
Đáp án đúng là: A
Mỗi tam giác nội tiếp có đúng một đường tròn.
Mỗi đường tròn ngoại tiếp có vô số tam giác.
Mỗi tam giác ngoại tiếp có đúng một đường tròn.
Mỗi đường tròn nội tiếp có vô số tam giác.
Lời giải
Đáp án đúng là: A

Xét tam giác đều ABC, có tâm đường tròn ngoại tiếp I là trọng tâm của tam giác ABC.
Tâm nội tiếp của tam giác đều ABC là trọng tâm của tam giác ABC.
Suy ra điểm O trùng với điểm I.
Vì tam giác ABC là tam giác đều nên điểm I vừa là trọng tâm vừa là trực tâm của tam giác ABC.
Điểm I là trực tâm của tam giác ABC suy ra \(AI = \frac{2}{3}AH\) hay AI = 2IH.
Do đó R = 2r.
Vậy khẳng định D là khẳng định sai.
Lời giải

Áp dụng định lí Pythagore cho tam giác ABC vuông cân tại A, ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {2\sqrt 2 } \right)}^2}} = \sqrt {16} = 4\) (cm).
Do đó \(R = \frac{{BC}}{2} = \frac{4}{2} = 2\) (cm).
Lời giải

Gọi R là bán kinh đường tròn ngoại tiếp tam giác ABC.
Ta có \(R = \frac{{\sqrt 3 }}{3}BC,\) hay \(BC = \sqrt 3 R = 3\sqrt 3 \) (cm).
Gọi M là trung điểm của BC.
Ta có \(AM = \frac{{\sqrt 3 }}{2}BC = \frac{9}{2}\) cm.
Vậy \({S_{ABC}} = \frac{1}{2}AM.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3 = \frac{{27\sqrt 3 }}{4}\) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
70 Đánh giá
50%
40%
0%
0%
0%