Giải VTH Toán 9 KNTT Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác có đáp án
85 người thi tuần này 4.6 612 lượt thi 11 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
36 bài tập Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 3. Hình cầu có đáp án
6 bài tập Ứng dụng của mặt cầu trong thực tiễn (có lời giải)
3 bài tập Tính bán kính , diện tích, thể tích của mặt cầu (có lời giải)
20 bài tập Toán 9 Cánh diều Bài 2. Hình nón có đáp án
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Tâm đường tròn ngoại tiếp một tam giác là giao điểm của ba đường trung trực.
Tâm đường tròn nội tiếp một tam giác là giao điểm của ba đường phân giác.
Tâm đường tròn nội tiếp một tam giác đều là trọng tâm của tam giác đó.
Tâm đường tròn ngoại tiếp một tam giác vuông là trung điểm của cạnh huyền.
Lời giải
Đáp án đúng là: A
Mỗi tam giác nội tiếp có đúng một đường tròn.
Mỗi đường tròn ngoại tiếp có vô số tam giác.
Mỗi tam giác ngoại tiếp có đúng một đường tròn.
Mỗi đường tròn nội tiếp có vô số tam giác.
Lời giải
Đáp án đúng là: A
Xét tam giác đều ABC, có tâm đường tròn ngoại tiếp I là trọng tâm của tam giác ABC.
Tâm nội tiếp của tam giác đều ABC là trọng tâm của tam giác ABC.
Suy ra điểm O trùng với điểm I.
Vì tam giác ABC là tam giác đều nên điểm I vừa là trọng tâm vừa là trực tâm của tam giác ABC.
Điểm I là trực tâm của tam giác ABC suy ra \(AI = \frac{2}{3}AH\) hay AI = 2IH.
Do đó R = 2r.
Vậy khẳng định D là khẳng định sai.
Lời giải
Áp dụng định lí Pythagore cho tam giác ABC vuông cân tại A, ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {2\sqrt 2 } \right)}^2}} = \sqrt {16} = 4\) (cm).
Do đó \(R = \frac{{BC}}{2} = \frac{4}{2} = 2\) (cm).
Lời giải
Gọi R là bán kinh đường tròn ngoại tiếp tam giác ABC.
Ta có \(R = \frac{{\sqrt 3 }}{3}BC,\) hay \(BC = \sqrt 3 R = 3\sqrt 3 \) (cm).
Gọi M là trung điểm của BC.
Ta có \(AM = \frac{{\sqrt 3 }}{2}BC = \frac{9}{2}\) cm.
Vậy \({S_{ABC}} = \frac{1}{2}AM.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3 = \frac{{27\sqrt 3 }}{4}\) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.