Câu hỏi:

24/08/2024 497 Lưu

Chọn phương án đúng.

Khẳng định nào dưới đây là đúng?

A. Mỗi tam giác nội tiếp đúng một đường tròn.

B. Mỗi đường tròn ngoại tiếp đúng một tam giác.

C. Mỗi tam giác ngoại tiếp vô số đường tròn.

D. Mỗi đường tròn nội tiếp đúng một tam giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

– Mỗi tam giác nội tiếp có đúng một đường tròn.

– Mỗi đường tròn ngoại tiếp có vô số tam giác.

– Mỗi tam giác ngoại tiếp có đúng một đường tròn.

– Mỗi đường tròn nội tiếp có vô số tam giác.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(\widehat {BAH} = \widehat {OAC}.\) (ảnh 1)

Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó

\(\widehat {BAH} = \widehat {BAD} = 90^\circ  - \widehat {ABD} = 90^\circ  - \widehat {ABC}.\) (1)

Mặt khác, vì ∆AOC cân tại O nên:

\(\widehat {OAC} = \widehat {OCA} = \frac{{180^\circ  - \widehat {AOC}}}{2} = 90^\circ  - \frac{{\widehat {AOC}}}{2} = 90^\circ  - \widehat {ABC}.\) (2)

Từ (1) và (2) suy ra \(\widehat {BAH} = \widehat {OAC}.\)

Lời giải

Cho tam giác đều ABC nội tiếp đường tròn (O). Biết rằng đường tròn (O) có bán kính bằng 3 cm. Tính diện tích tam giác ABC. (ảnh 1)

Gọi R là bán kinh đường tròn ngoại tiếp tam giác ABC.

Ta có \(R = \frac{{\sqrt 3 }}{3}BC,\) hay \(BC = \sqrt 3 R = 3\sqrt 3 \) (cm).

Gọi M là trung điểm của BC.

Ta có \(AM = \frac{{\sqrt 3 }}{2}BC = \frac{9}{2}\) cm.

 Vậy \({S_{ABC}} = \frac{1}{2}AM.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3 = \frac{{27\sqrt 3 }}{4}\) (cm2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP