Giải VTH Toán 9 KNTT Bài tập cuối chương 9 có đáp án
28 người thi tuần này 4.6 431 lượt thi 10 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Trong một đường tròn hoặc hai đường tròn bằng nhau:
⦁ Góc nội tiếp có số đo bằng nửa số đo cung bị chắn.
Do đó phương án A là sai và phương án C là đúng.
⦁ Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó nên phương án B và D là sai.
Vậy khẳng định C là khẳng định đúng.
Lời giải
Đáp án đúng là: D
Xét tứ giác ABCD nội tiếp đường tròn (O), ta có \(\widehat A + \widehat C = 180^\circ \) mà \(\widehat A - \widehat C = 100^\circ .\)
Cộng vế với vế, ta được \(2\widehat A = 180^\circ + 100^\circ = 280^\circ \) hay \(\widehat A = \frac{{280^\circ }}{2} = 140^\circ .\)
Suy ra \(\widehat C = 180^\circ - \widehat A = 180^\circ - 140^\circ = 40^\circ .\)
Lời giải
Đáp án đúng là: B
⦁ Các tam giác, hình chữ nhật, đa giác đều là các đa giác nội tiếp được một đường tròn.
⦁ Hình bình hành không là đa giác nội tiếp đường tròn.
Vậy hình bình hành không nội tiếp một đường tròn.
Lời giải
a) Do hai tam giác AEH và AFH vuông tại E và F nên IE = IA = IH = IF.
Vì vậy tứ giác AEHF nội tiếp đường tròn (I, IA).
b) Tương tự như trên, tứ giác BCEF có \(\widehat {BFC} = \widehat {BEC} = 90^\circ \) nên tứ giác BCEF nội tiếp đường tròn (M, MB).
Suy ra \[\widehat {AEF} = 180^\circ - \widehat {{\rm{CEF}}} = \widehat {FBC} = \widehat {ABC}.\]
Vì ∆IFA cân tại I nên \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = 90^\circ - \widehat {ABC}.\) (1)
Mặt khác, ta có MF = MC, hay ∆MFC cân tại M. Suy ra \(\widehat {MFC} = \widehat {MCF}.\) (2)
Vì vậy ta có:
\(\widehat {MFI} = \widehat {MFC} + \widehat {CFI} = \widehat {MCF} + \left( {90^\circ - \widehat {IFA}} \right) = \left( {90^\circ - \widehat {ABC}} \right) + \widehat {ABC} - 90^\circ \) (theo (1) và (2)).
Do đó MF ⊥ IF. Suy ra MF tiếp xúc với (I, IA). Tương tự MR tiếp xúc với (I, IA).
Lời giải
Do các tam giác AOB, AOC, BOC đều cân tại O nên OP, ON, OM lần lượt là các đường cao của các tam giác này.
Do vậy, tứ giác ANOP có \(\widehat {ANO} = \widehat {APO} = 90^\circ .\)
Do vậy tứ giác ANOP nội tiếp đường tròn có tâm là trung điểm của AO và bán kính bằng \(\frac{{AO}}{2}.\) Tương tự BPOM, CMON cũng là các tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
