Câu hỏi:

24/08/2024 552

Bạn Lan muốn cắt hình ngôi sao có dạng như hình dưới đây (trong đó ABCDE là một ngũ giác đều). Lan gấp đôi tờ giấy, vẽ một nửa ngôi sao và cắt theo nét vẽ. Góc tạo bởi lưỡi kéo và nếp gấp lúc đầu bằng bao nhiêu độ?

Bạn Lan muốn cắt hình ngôi sao có dạng như hình dưới đây (trong đó ABCDE là một ngũ giác đều). Lan gấp đôi tờ giấy, vẽ một nửa ngôi sao và cắt theo nét vẽ. Góc tạo bởi lưỡi kéo và nếp gấp lúc đầu bằng bao nhiêu độ? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Bạn Lan muốn cắt hình ngôi sao có dạng như hình dưới đây (trong đó ABCDE là một ngũ giác đều). Lan gấp đôi tờ giấy, vẽ một nửa ngôi sao và cắt theo nét vẽ. Góc tạo bởi lưỡi kéo và nếp gấp lúc đầu bằng bao nhiêu độ? (ảnh 2)

Ngũ giác đều ABCDE nội tiếp một đường tròn (O) và năm điểm A, B, C, D, E chia đường tròn (O) thành năm cung nhỏ có số đo bằng \(\frac{{360^\circ }}{5} = 72^\circ .\)

Mỗi góc của ngũ giác đều là góc nội tiếp chắn cung bằng tổng của ba cung nhỏ, cho nên mỗi góc của ngũ giác đều bằng \(\frac{{3.72^\circ }}{2} = 108^\circ .\)

Kí hiệu S là đỉnh trên cùng của ngôi sao.

Khi đó \(\widehat {SAB} = 180^\circ  - 108^\circ  = 72^\circ .\) Tương tự \(\widehat {SBA} = 72^\circ .\)

Vì tổng các góc của tam giá SAB bằng 180° nên \(\widehat {ASB} = 180^\circ  - 72^\circ  - 72^\circ  = 36^\circ .\)

Vì nếp gấp là trục đối xứng của ngôi sao lên sẽ nằm trên đường phân giác của góc ASB. Do đó góc tạo bởi lưỡi kéo và nếp gấp phải bằng \(\frac{1}{2}.36^\circ  = 18^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng: a) Tứ giác AEHF nội tiếp một đường tròn tâm I; b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF. (ảnh 1)

a) Do hai tam giác AEH và AFH vuông tại E và F nên IE = IA = IH = IF.

Vì vậy tứ giác AEHF nội tiếp đường tròn (I, IA).

b) Tương tự như trên, tứ giác BCEF có \(\widehat {BFC} = \widehat {BEC} = 90^\circ \) nên tứ giác BCEF nội tiếp đường tròn (M, MB).

Suy ra \[\widehat {AEF} = 180^\circ - \widehat {{\rm{CEF}}} = \widehat {FBC} = \widehat {ABC}.\]

Vì ∆IFA cân tại I nên \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = 90^\circ - \widehat {ABC}.\) (1)

Mặt khác, ta có MF = MC, hay ∆MFC cân tại M. Suy ra \(\widehat {MFC} = \widehat {MCF}.\) (2)

Vì vậy ta có:

\(\widehat {MFI} = \widehat {MFC} + \widehat {CFI} = \widehat {MCF} + \left( {90^\circ - \widehat {IFA}} \right) = \left( {90^\circ - \widehat {ABC}} \right) + \widehat {ABC} - 90^\circ \) (theo (1) và (2)).

Do đó MF IF. Suy ra MF tiếp xúc với (I, IA). Tương tự MR tiếp xúc với (I, IA).

Lời giải

Hình vuông cạnh 3 cm có đường chéo bằng: \(\sqrt {{3^2} + {3^2}} = 3\sqrt 2 \) (cm).

Đường tròn ngoại tiếp hình vuông này có bán kính: \(R = \frac{{3\sqrt 2 }}{2}\) (cm).

Vậy lục giác đều có cạnh: \(a = R = \frac{{3\sqrt 2 }}{2}\) (cm).

Chu vi của lục giác đều là: \(\mathcal{C} = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 \) (cm).

Lục giác đều là hợp của 6 tam giác đều cạnh a, chiều cao \(h = \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{2}.\frac{{3\sqrt 2 }}{2} = \frac{{3\sqrt 6 }}{4}\,\,(cm)\) nên có diện tích là:

\(S = 6.\frac{{ah}}{2} = 6.\frac{{\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 6 }}{4}}}{2} = \frac{{27\sqrt 3 }}{4}\) (cm2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP