Câu hỏi:
24/08/2024 252Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của hình lục giác đều đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hình vuông cạnh 3 cm có đường chéo bằng: \(\sqrt {{3^2} + {3^2}} = 3\sqrt 2 \) (cm).
Đường tròn ngoại tiếp hình vuông này có bán kính: \(R = \frac{{3\sqrt 2 }}{2}\) (cm).
Vậy lục giác đều có cạnh: \(a = R = \frac{{3\sqrt 2 }}{2}\) (cm).
Chu vi của lục giác đều là: \(\mathcal{C} = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 \) (cm).
Lục giác đều là hợp của 6 tam giác đều cạnh a, chiều cao \(h = \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{2}.\frac{{3\sqrt 2 }}{2} = \frac{{3\sqrt 6 }}{4}\,\,(cm)\) nên có diện tích là:
\(S = 6.\frac{{ah}}{2} = 6.\frac{{\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 6 }}{4}}}{2} = \frac{{27\sqrt 3 }}{4}\) (cm2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng:
a) Tứ giác AEHF nội tiếp một đường tròn tâm I;
b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
Câu 2:
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC và M là trung điểm của BC. Chứng minh rằng AH = 2OM.
Câu 3:
Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.
Câu 4:
Chọn phương án đúng.
Cho tứ giác ABCD nội tiếp một đường tròn có \(\widehat A - \widehat C = 100^\circ .\) Khẳng định nào sau đây là đúng?
A. \(\widehat A = 80^\circ .\)
B. \(\widehat C = 80^\circ .\)
C. \(\widehat B + \widehat D = 80^\circ .\)
D. \(\widehat A = 140^\circ .\)
Câu 5:
a) Cho hình vuông ABCD nội tiếp đường tròn (O) như hình bên. Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A', B', C', D'. Hãy vẽ tứ giác A'B'C'D'.
Câu 6:
Bạn Lan muốn cắt hình ngôi sao có dạng như hình dưới đây (trong đó ABCDE là một ngũ giác đều). Lan gấp đôi tờ giấy, vẽ một nửa ngôi sao và cắt theo nét vẽ. Góc tạo bởi lưỡi kéo và nếp gấp lúc đầu bằng bao nhiêu độ?
về câu hỏi!