Câu hỏi:
24/08/2024 5,224
Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của hình lục giác đều đã cho.
Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của hình lục giác đều đã cho.
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Bài tập cuối chương 9 có đáp án !!
Quảng cáo
Trả lời:
Hình vuông cạnh 3 cm có đường chéo bằng: \(\sqrt {{3^2} + {3^2}} = 3\sqrt 2 \) (cm).
Đường tròn ngoại tiếp hình vuông này có bán kính: \(R = \frac{{3\sqrt 2 }}{2}\) (cm).
Vậy lục giác đều có cạnh: \(a = R = \frac{{3\sqrt 2 }}{2}\) (cm).
Chu vi của lục giác đều là: \(\mathcal{C} = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 \) (cm).
Lục giác đều là hợp của 6 tam giác đều cạnh a, chiều cao \(h = \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{2}.\frac{{3\sqrt 2 }}{2} = \frac{{3\sqrt 6 }}{4}\,\,(cm)\) nên có diện tích là:
\(S = 6.\frac{{ah}}{2} = 6.\frac{{\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 6 }}{4}}}{2} = \frac{{27\sqrt 3 }}{4}\) (cm2).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Do hai tam giác AEH và AFH vuông tại E và F nên IE = IA = IH = IF.
Vì vậy tứ giác AEHF nội tiếp đường tròn (I, IA).
b) Tương tự như trên, tứ giác BCEF có \(\widehat {BFC} = \widehat {BEC} = 90^\circ \) nên tứ giác BCEF nội tiếp đường tròn (M, MB).
Suy ra \[\widehat {AEF} = 180^\circ - \widehat {{\rm{CEF}}} = \widehat {FBC} = \widehat {ABC}.\]
Vì ∆IFA cân tại I nên \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = 90^\circ - \widehat {ABC}.\) (1)
Mặt khác, ta có MF = MC, hay ∆MFC cân tại M. Suy ra \(\widehat {MFC} = \widehat {MCF}.\) (2)
Vì vậy ta có:
\(\widehat {MFI} = \widehat {MFC} + \widehat {CFI} = \widehat {MCF} + \left( {90^\circ - \widehat {IFA}} \right) = \left( {90^\circ - \widehat {ABC}} \right) + \widehat {ABC} - 90^\circ \) (theo (1) và (2)).
Do đó MF ⊥ IF. Suy ra MF tiếp xúc với (I, IA). Tương tự MR tiếp xúc với (I, IA).
Lời giải

Do các tam giác AOB, AOC, BOC đều cân tại O nên OP, ON, OM lần lượt là các đường cao của các tam giác này.
Do vậy, tứ giác ANOP có \(\widehat {ANO} = \widehat {APO} = 90^\circ .\)
Do vậy tứ giác ANOP nội tiếp đường tròn có tâm là trung điểm của AO và bán kính bằng \(\frac{{AO}}{2}.\) Tương tự BPOM, CMON cũng là các tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.