a) Cho hình vuông ABCD nội tiếp đường tròn (O) như hình bên. Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A', B', C', D'. Hãy vẽ tứ giác A'B'C'D'.
b) Phép quay trong câu a biến các điểm A', B', C', D' thành những điểm nào?
a) Cho hình vuông ABCD nội tiếp đường tròn (O) như hình bên. Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A', B', C', D'. Hãy vẽ tứ giác A'B'C'D'.
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Bài tập cuối chương 9 có đáp án !!
Quảng cáo
Trả lời:
a) Ảnh của hình vuông ABCD qua phép quay ngược chiều 45° với tâm O là hình vuông A'B'C'D' được vẽ như hình bên.
b) Phép quay trong câu a lại biến các điểm A', B', C', D' thành A, B, C, D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do hai tam giác AEH và AFH vuông tại E và F nên IE = IA = IH = IF.
Vì vậy tứ giác AEHF nội tiếp đường tròn (I, IA).
b) Tương tự như trên, tứ giác BCEF có \(\widehat {BFC} = \widehat {BEC} = 90^\circ \) nên tứ giác BCEF nội tiếp đường tròn (M, MB).
Suy ra \[\widehat {AEF} = 180^\circ - \widehat {{\rm{CEF}}} = \widehat {FBC} = \widehat {ABC}.\]
Vì ∆IFA cân tại I nên \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = 90^\circ - \widehat {ABC}.\) (1)
Mặt khác, ta có MF = MC, hay ∆MFC cân tại M. Suy ra \(\widehat {MFC} = \widehat {MCF}.\) (2)
Vì vậy ta có:
\(\widehat {MFI} = \widehat {MFC} + \widehat {CFI} = \widehat {MCF} + \left( {90^\circ - \widehat {IFA}} \right) = \left( {90^\circ - \widehat {ABC}} \right) + \widehat {ABC} - 90^\circ \) (theo (1) và (2)).
Do đó MF ⊥ IF. Suy ra MF tiếp xúc với (I, IA). Tương tự MR tiếp xúc với (I, IA).
Lời giải
Hình vuông cạnh 3 cm có đường chéo bằng: \(\sqrt {{3^2} + {3^2}} = 3\sqrt 2 \) (cm).
Đường tròn ngoại tiếp hình vuông này có bán kính: \(R = \frac{{3\sqrt 2 }}{2}\) (cm).
Vậy lục giác đều có cạnh: \(a = R = \frac{{3\sqrt 2 }}{2}\) (cm).
Chu vi của lục giác đều là: \(\mathcal{C} = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 \) (cm).
Lục giác đều là hợp của 6 tam giác đều cạnh a, chiều cao \(h = \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{2}.\frac{{3\sqrt 2 }}{2} = \frac{{3\sqrt 6 }}{4}\,\,(cm)\) nên có diện tích là:
\(S = 6.\frac{{ah}}{2} = 6.\frac{{\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 6 }}{4}}}{2} = \frac{{27\sqrt 3 }}{4}\) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.