Câu hỏi:

24/08/2024 602

Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC và M là trung điểm của BC. Chứng minh rằng AH = 2OM.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC và M là trung điểm của BC. Chứng minh rằng AH = 2OM. (ảnh 1)

Kẻ đường cao CD của tam giác ABC. Gọi N là trung điểm của cạnh AC.

Khi đó tam giác AOC cân tại O nên ON cũng là đường phân giác của góc AOC.

Do vậy \[\widehat {AON} = \frac{{\widehat {AOC}}}{2} = \widehat {ABC}.\]

Suy ra \(\widehat {NAO} = 90^\circ - \widehat {AON} = 90^\circ - \widehat {ABC} = \widehat {DAH}.\)

Tương tự \[\widehat {MCO} = 90^\circ - \widehat {COM} = 90^\circ - \widehat {DAC} = \widehat {DCA}.\]

Hai tam giác NAO và DAH có:

\(\widehat {NAO} = \widehat {DAH}\) (chứng minh trên), \(\widehat {ANO} = \widehat {ADH} = 90^\circ .\)

Do đó ∆NAO ∆DAH (g.g).

Suy ra \(\frac{{AO}}{{AH}} = \frac{{AN}}{{AD}},\) hay \(AH = \frac{{AO.AD}}{{AN}} = \frac{{2AO.AD}}{{AC}}.\) (1)

Hai tam giác OMC và ADC có:

\[\widehat {MCO} = \widehat {DCA}\] (chứng minh trên), \[\widehat {OMC} = \widehat {ADC} = 90^\circ .\]

Vì vậy ∆OMC ∆ADC (g.g).

Suy ra \(\frac{{OM}}{{AD}} = \frac{{OC}}{{AC}}.\)

Do đó \(2OM = \frac{{2OC.AD}}{{AC}} = \frac{{2OA.OC}}{{AC}} = AH\) (theo (1)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng:

a) Tứ giác AEHF nội tiếp một đường tròn tâm I;

b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Xem đáp án » 24/08/2024 3,300

Câu 2:

Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của hình lục giác đều đã cho.

Xem đáp án » 24/08/2024 1,105

Câu 3:

Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.

Xem đáp án » 24/08/2024 637

Câu 4:

Chọn phương án đúng.

Cho tứ giác ABCD nội tiếp một đường tròn có \(\widehat A - \widehat C = 100^\circ .\) Khẳng định nào sau đây là đúng?

A. \(\widehat A = 80^\circ .\)

B. \(\widehat C = 80^\circ .\)

C. \(\widehat B + \widehat D = 80^\circ .\)

D. \(\widehat A = 140^\circ .\)

Xem đáp án » 24/08/2024 286

Câu 5:

a) Cho hình vuông ABCD nội tiếp đường tròn (O) như hình bên. Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A', B', C', D'. Hãy vẽ tứ giác A'B'C'D'.

a) Cho hình vuông ABCD nội tiếp đường tròn (O) như hình bên. Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A', B', C', D'. Hãy vẽ tứ giác A'B'C'D'. (ảnh 1)
b) Phép quay trong câu a biến các điểm A', B', C', D' thành những điểm nào?

Xem đáp án » 24/08/2024 261

Câu 6:

Chọn phương án đúng.

Khẳng định nào sau đây là đúng?

A. Góc nội tiếp có số đo bằng số đo cung bị chắn.

B. Góc có hai cạnh chứa các dây cung của đường tròn là góc nội tiếp đường tròn đó.

C. Góc nội tiếp có số đo bằng một nửa số đo cung bị chắn.

D. Góc có đỉnh nằm trên đường tròn là góc nội tiếp đường tròn đó.

Xem đáp án » 24/08/2024 164

Bình luận


Bình luận