Câu hỏi:
24/08/2024 479Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC và M là trung điểm của BC. Chứng minh rằng AH = 2OM.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Kẻ đường cao CD của tam giác ABC. Gọi N là trung điểm của cạnh AC.
Khi đó tam giác AOC cân tại O nên ON cũng là đường phân giác của góc AOC.
Do vậy \[\widehat {AON} = \frac{{\widehat {AOC}}}{2} = \widehat {ABC}.\]
Suy ra \(\widehat {NAO} = 90^\circ - \widehat {AON} = 90^\circ - \widehat {ABC} = \widehat {DAH}.\)
Tương tự \[\widehat {MCO} = 90^\circ - \widehat {COM} = 90^\circ - \widehat {DAC} = \widehat {DCA}.\]
Hai tam giác NAO và DAH có:
\(\widehat {NAO} = \widehat {DAH}\) (chứng minh trên), \(\widehat {ANO} = \widehat {ADH} = 90^\circ .\)
Do đó ∆NAO ᔕ ∆DAH (g.g).
Suy ra \(\frac{{AO}}{{AH}} = \frac{{AN}}{{AD}},\) hay \(AH = \frac{{AO.AD}}{{AN}} = \frac{{2AO.AD}}{{AC}}.\) (1)
Hai tam giác OMC và ADC có:
\[\widehat {MCO} = \widehat {DCA}\] (chứng minh trên), \[\widehat {OMC} = \widehat {ADC} = 90^\circ .\]
Vì vậy ∆OMC ᔕ ∆ADC (g.g).
Suy ra \(\frac{{OM}}{{AD}} = \frac{{OC}}{{AC}}.\)
Do đó \(2OM = \frac{{2OC.AD}}{{AC}} = \frac{{2OA.OC}}{{AC}} = AH\) (theo (1)).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng:
a) Tứ giác AEHF nội tiếp một đường tròn tâm I;
b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
Câu 2:
Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của hình lục giác đều đã cho.
Câu 3:
Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.
Câu 4:
Chọn phương án đúng.
Cho tứ giác ABCD nội tiếp một đường tròn có \(\widehat A - \widehat C = 100^\circ .\) Khẳng định nào sau đây là đúng?
A. \(\widehat A = 80^\circ .\)
B. \(\widehat C = 80^\circ .\)
C. \(\widehat B + \widehat D = 80^\circ .\)
D. \(\widehat A = 140^\circ .\)
Câu 5:
a) Cho hình vuông ABCD nội tiếp đường tròn (O) như hình bên. Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A', B', C', D'. Hãy vẽ tứ giác A'B'C'D'.
Câu 6:
Cho một lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng lục giác đều có diện tích \(6\sqrt 3 \) cm2, hãy tính độ dài cạnh của hình vuông đã cho.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!