Giải VTH Toán 9 KNTT Luyện tập chung trang 78 có đáp án
50 người thi tuần này 4.6 495 lượt thi 7 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
36 bài tập Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 3. Hình cầu có đáp án
6 bài tập Ứng dụng của mặt cầu trong thực tiễn (có lời giải)
3 bài tập Tính bán kính , diện tích, thể tích của mặt cầu (có lời giải)
20 bài tập Toán 9 Cánh diều Bài 2. Hình nón có đáp án
Danh sách câu hỏi:
Lời giải
Ta có \(\widehat A = \frac{{\widehat {BOC}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \) (góc nội tiếp \(\widehat A\) và góc ở tâm \[\widehat {BOC}\] cùng chắn cung ).
Tam giác AOC cân tại O nên \[\widehat {AOC} = 180^\circ - \widehat {OAC} - \widehat {OCA} = 180^\circ - 2\widehat {OCA} = 140^\circ .\]
Suy ra \[\widehat B = \frac{{\widehat {AOC}}}{2} = \frac{{140^\circ }}{2} = 70^\circ .\]
Do tổng các góc trong ∆ABC bằng 180° nên \(\widehat C = 180^\circ - \widehat A - \widehat B = 50^\circ .\)
Lời giải
Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác đều ABC. Ta có \(R = \frac{{\sqrt 3 }}{3}.4 = \frac{{4\sqrt 3 }}{3}\) (cm), \(r = \frac{{\sqrt 3 }}{6}.4 = \frac{{2\sqrt 3 }}{3}\) (cm).
Lời giải
a) Ta có \(R = \frac{{\sqrt 3 }}{3}.3 = \sqrt 3 \) (cm).
b) Bán kính đường tròn nội tiếp của tam giác ABC là: \(r = \frac{{\sqrt 3 }}{6}.3 = \frac{{\sqrt 3 }}{2}\) (cm).
Chiều cao từ đỉnh O xuống cạnh BC của ∆OBC bằng bán kính đường tròn nội tiếp của tam giác ABC. Do vậy
\({S_{OBC}} = \frac{1}{2}r.BC = \frac{1}{2}.\frac{{\sqrt 3 }}{2}.3 = \frac{{3\sqrt 3 }}{4}\) (cm2).
Ta có \(\widehat {BOC} = 2\widehat {BAC} = 2.60^\circ = 120^\circ .\) Diện tích hình quạt chắn cung nhỏ BC là:
\(S' = \frac{{120}}{{360}}\pi .{\left( {\sqrt 3 } \right)^2} = \pi \) (cm2).
Vậy diện tích hình viên phân cần tính là:
\(S = S' - {S_{OBC}} = \pi - \frac{{3\sqrt 3 }}{4} \approx 1,84\) (cm2).
Lời giải
Giả sử khu vui chơi có dạng tam giác đều ABC. Gọi O là tâm đường tròn ngoại tiếp và R là bán kính của đường tròn ngoại tiếp tam giác ABC. Khi đó ta có
\(R = \frac{{\sqrt 3 }}{3}.60 = 20\sqrt 3 \) (cm).
Do R < 50 nên lắp đặt bộ phát sóng wifi vào vị trí O thì cả hình tròn tâm O bán kính R đều nằm trong vùng phủ sóng. Vì mọi điểm trong khu vui chơi đều không nằm ngoài diện tích của đường tròn (O; R) nên đều có thể bắt được sóng.
Lời giải
a) Phần đất cần tính diện tích có dạng hình một tam giác ABC, với AB = 900 m, AC = 1 200 m, BC = 1 500 m.
Ta thấy BC2 = AB2 + AC2.
Do vậy, theo định lí Pythagore đảo thì ABC là tam giác vuông tại A.
Chu vi và diện tích của tam giác ABC lần lượt là:
\(\mathcal{C} = AB + AC + BC = 900 + 1\,\,200 + 1\,\,500 = 3\,\,600\) (m); \({S_{ABC}} = \frac{1}{2}AB.AC = 540\,\,000\) (m2).
b) Để khách sạn cách đều cả ba con đường thì cần phải được xây vào đúng vị trí tâm đường tròn nội tiếp của tam giác ABC.
Khi đó cho chiều cao hạ từ đỉnh I xuống các cạnh BC, CA, AB của các tam giác IBC, ICA, IAB đều bằng đường kính r của đường tròn nội tiếp tam giác ABC. Do đó
\({S_{ABC}} = {S_{IBC}} + {S_{ICA}} + {S_{IAB}} = \frac{1}{2}r.\left( {AB + AC + BC} \right) = \frac{{r.\mathcal{C}}}{2}.\)
Suy ra \(r = \frac{{2 \cdot {S_{ABC}}}}{\mathcal{C}} = \frac{{2 \cdot 540\,\,000}}{{3600}} = 300\) (m).
Vậy khách sạn sẽ cách mỗi con đường là 300 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.