Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như hình bên.
a) Tính bán kính R của đường tròn (O).
b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC.
Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như hình bên.

a) Tính bán kính R của đường tròn (O).
b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC.
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Luyện tập chung trang 78 có đáp án !!
Quảng cáo
Trả lời:
a) Ta có \(R = \frac{{\sqrt 3 }}{3}.3 = \sqrt 3 \) (cm).
b) Bán kính đường tròn nội tiếp của tam giác ABC là: \(r = \frac{{\sqrt 3 }}{6}.3 = \frac{{\sqrt 3 }}{2}\) (cm).
Chiều cao từ đỉnh O xuống cạnh BC của ∆OBC bằng bán kính đường tròn nội tiếp của tam giác ABC. Do vậy
\({S_{OBC}} = \frac{1}{2}r.BC = \frac{1}{2}.\frac{{\sqrt 3 }}{2}.3 = \frac{{3\sqrt 3 }}{4}\) (cm2).
Ta có \(\widehat {BOC} = 2\widehat {BAC} = 2.60^\circ = 120^\circ .\) Diện tích hình quạt chắn cung nhỏ BC là:
\(S' = \frac{{120}}{{360}}\pi .{\left( {\sqrt 3 } \right)^2} = \pi \) (cm2).
Vậy diện tích hình viên phân cần tính là:
\(S = S' - {S_{OBC}} = \pi - \frac{{3\sqrt 3 }}{4} \approx 1,84\) (cm2).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác đều ABC. Ta có \(R = \frac{{\sqrt 3 }}{3}.4 = \frac{{4\sqrt 3 }}{3}\) (cm), \(r = \frac{{\sqrt 3 }}{6}.4 = \frac{{2\sqrt 3 }}{3}\) (cm).
Lời giải

a) Phần đất cần tính diện tích có dạng hình một tam giác ABC, với AB = 900 m, AC = 1 200 m, BC = 1 500 m.
Ta thấy BC2 = AB2 + AC2.
Do vậy, theo định lí Pythagore đảo thì ABC là tam giác vuông tại A.
Chu vi và diện tích của tam giác ABC lần lượt là:
\(\mathcal{C} = AB + AC + BC = 900 + 1\,\,200 + 1\,\,500 = 3\,\,600\) (m); \({S_{ABC}} = \frac{1}{2}AB.AC = 540\,\,000\) (m2).
b) Để khách sạn cách đều cả ba con đường thì cần phải được xây vào đúng vị trí tâm đường tròn nội tiếp của tam giác ABC.
Khi đó cho chiều cao hạ từ đỉnh I xuống các cạnh BC, CA, AB của các tam giác IBC, ICA, IAB đều bằng đường kính r của đường tròn nội tiếp tam giác ABC. Do đó
\({S_{ABC}} = {S_{IBC}} + {S_{ICA}} + {S_{IAB}} = \frac{1}{2}r.\left( {AB + AC + BC} \right) = \frac{{r.\mathcal{C}}}{2}.\)
Suy ra \(r = \frac{{2 \cdot {S_{ABC}}}}{\mathcal{C}} = \frac{{2 \cdot 540\,\,000}}{{3600}} = 300\) (m).
Vậy khách sạn sẽ cách mỗi con đường là 300 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.