Câu hỏi:

24/08/2024 7,707

Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng \[\widehat {BOC} = 120^\circ \]\[\widehat {OCA} = 20^\circ .\] Tính số đo các góc của tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng góc BOC = 120 độ và OCA = 20 độ Tính số đo các góc của tam giác ABC. (ảnh 1)

Ta có \(\widehat A = \frac{{\widehat {BOC}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \) (góc nội tiếp \(\widehat A\) và góc ở tâm \[\widehat {BOC}\] cùng chắn cung ).

Tam giác AOC cân tại O nên \[\widehat {AOC} = 180^\circ  - \widehat {OAC} - \widehat {OCA} = 180^\circ  - 2\widehat {OCA} = 140^\circ .\]

Suy ra \[\widehat B = \frac{{\widehat {AOC}}}{2} = \frac{{140^\circ }}{2} = 70^\circ .\]

Do tổng các góc trong ∆ABC bằng 180° nên \(\widehat C = 180^\circ  - \widehat A - \widehat B = 50^\circ .\)

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(R = \frac{{\sqrt 3 }}{3}.3 = \sqrt 3 \) (cm).

b) Bán kính đường tròn nội tiếp của tam giác ABC là: \(r = \frac{{\sqrt 3 }}{6}.3 = \frac{{\sqrt 3 }}{2}\) (cm).

Chiều cao từ đỉnh O xuống cạnh BC của ∆OBC bằng bán kính đường tròn nội tiếp của tam giác ABC. Do vậy

\({S_{OBC}} = \frac{1}{2}r.BC = \frac{1}{2}.\frac{{\sqrt 3 }}{2}.3 = \frac{{3\sqrt 3 }}{4}\) (cm2).

Ta có \(\widehat {BOC} = 2\widehat {BAC} = 2.60^\circ = 120^\circ .\) Diện tích hình quạt chắn cung nhỏ BC là:

\(S' = \frac{{120}}{{360}}\pi .{\left( {\sqrt 3 } \right)^2} = \pi \) (cm2).

Vậy diện tích hình viên phân cần tính là:

\(S = S' - {S_{OBC}} = \pi - \frac{{3\sqrt 3 }}{4} \approx 1,84\) (cm2).

Lời giải

Cho tam giác đều ABC có độ dài cạnh bằng 4 cm. Tính bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC. (ảnh 1)

Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác đều ABC. Ta có \(R = \frac{{\sqrt 3 }}{3}.4 = \frac{{4\sqrt 3 }}{3}\) (cm), \(r = \frac{{\sqrt 3 }}{6}.4 = \frac{{2\sqrt 3 }}{3}\) (cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay