Câu hỏi:

24/08/2024 551

Cho ABC là tam giác vuông tại đỉnh A và nội tiếp đường tròn (O) có bán kính 5 cm. Biết rằng diện tích tam giác ABC bằng 24 cm2. Tính bán kính đường tròn nội tiếp của tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ABC là tam giác vuông tại đỉnh A và nội tiếp đường tròn (O) có bán kính 5 cm. Biết rằng diện tích tam giác ABC bằng 24 cm2. Tính bán kính đường tròn nội tiếp của tam giác ABC. (ảnh 1)

Vì bán kính đường tròn ngoại tiếp tam giác vuông bằng một nửa cạnh huyền của tam giác nên: BC = 2.5 = 10 (cm).

Theo định lí Pythagore, ta có:

AB2 + AC2 = BC2 = 102 = 100 (cm2).

Vì diện tích tam giác ABC bằng 24 cm2 nên:

\(\frac{1}{2}AB.AC = 24\) (cm2).

Từ đây suy ra (AB + AC)2 = AB2 + 2.AB.AC + AC2 = 100 + 2.48 = 196.

Hay AB + AC = 14 (cm).

Gọi I là tâm đường tròn nội tiếp và r là bán kính của đường tròn nội tiếp tam giác ABC. Khi đó r là chiều cao hạ từ đỉnh I xuống các cạnh BC, CA, AB của các tam giác BIC, CIA, AIB. Do đó

\({S_{ABC}} = {S_{BIC}} + {S_{CIA}} + {S_{AIB}} = \frac{1}{2}BC.r + \frac{1}{2}CA.r + \frac{1}{2}AB.r = \frac{1}{2}\left( {BC + CA + AB} \right).r.\)

Suy ra \(24 = \frac{1}{2}\left( {10 + 14} \right).r,\) hay r = 2 cm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(R = \frac{{\sqrt 3 }}{3}.3 = \sqrt 3 \) (cm).

b) Bán kính đường tròn nội tiếp của tam giác ABC là: \(r = \frac{{\sqrt 3 }}{6}.3 = \frac{{\sqrt 3 }}{2}\) (cm).

Chiều cao từ đỉnh O xuống cạnh BC của ∆OBC bằng bán kính đường tròn nội tiếp của tam giác ABC. Do vậy

\({S_{OBC}} = \frac{1}{2}r.BC = \frac{1}{2}.\frac{{\sqrt 3 }}{2}.3 = \frac{{3\sqrt 3 }}{4}\) (cm2).

Ta có \(\widehat {BOC} = 2\widehat {BAC} = 2.60^\circ = 120^\circ .\) Diện tích hình quạt chắn cung nhỏ BC là:

\(S' = \frac{{120}}{{360}}\pi .{\left( {\sqrt 3 } \right)^2} = \pi \) (cm2).

Vậy diện tích hình viên phân cần tính là:

\(S = S' - {S_{OBC}} = \pi - \frac{{3\sqrt 3 }}{4} \approx 1,84\) (cm2).

Lời giải

Cho tam giác đều ABC có độ dài cạnh bằng 4 cm. Tính bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC. (ảnh 1)

Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác đều ABC. Ta có \(R = \frac{{\sqrt 3 }}{3}.4 = \frac{{4\sqrt 3 }}{3}\) (cm), \(r = \frac{{\sqrt 3 }}{6}.4 = \frac{{2\sqrt 3 }}{3}\) (cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay