Câu hỏi:

24/08/2024 6,934 Lưu

Trong một khu vui chơi có dạng hình tam giác đều với độ dài cạnh bằng 60 m, người ta muốn tìm một vị trí đặt bộ phát sóng wifi sao cho ở chỗ nào trong khu vui chơi đó đều có thể bắt được sóng. Biết rằng bộ phát sóng đó có tầm phát sóng tối đa là 50 m, hỏi rằng có thể tìm được vị trí để đặt bộ phát sóng như vậy hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trong một khu vui chơi có dạng hình tam giác đều với độ dài cạnh bằng 60 m, người ta muốn tìm một vị trí đặt bộ phát sóng wifi sao cho ở chỗ nào trong khu vui chơi đó đều có thể bắt được sóng (ảnh 1)

Giả sử khu vui chơi có dạng tam giác đều ABC. Gọi O là tâm đường tròn ngoại tiếp và R là bán kính của đường tròn ngoại tiếp tam giác ABC. Khi đó ta có

\(R = \frac{{\sqrt 3 }}{3}.60 = 20\sqrt 3 \) (cm).

Do R < 50 nên lắp đặt bộ phát sóng wifi vào vị trí O thì cả hình tròn tâm O bán kính R đều nằm trong vùng phủ sóng. Vì mọi điểm trong khu vui chơi đều không nằm ngoài diện tích của đường tròn (O; R) nên đều có thể bắt được sóng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(R = \frac{{\sqrt 3 }}{3}.3 = \sqrt 3 \) (cm).

b) Bán kính đường tròn nội tiếp của tam giác ABC là: \(r = \frac{{\sqrt 3 }}{6}.3 = \frac{{\sqrt 3 }}{2}\) (cm).

Chiều cao từ đỉnh O xuống cạnh BC của ∆OBC bằng bán kính đường tròn nội tiếp của tam giác ABC. Do vậy

\({S_{OBC}} = \frac{1}{2}r.BC = \frac{1}{2}.\frac{{\sqrt 3 }}{2}.3 = \frac{{3\sqrt 3 }}{4}\) (cm2).

Ta có \(\widehat {BOC} = 2\widehat {BAC} = 2.60^\circ = 120^\circ .\) Diện tích hình quạt chắn cung nhỏ BC là:

\(S' = \frac{{120}}{{360}}\pi .{\left( {\sqrt 3 } \right)^2} = \pi \) (cm2).

Vậy diện tích hình viên phân cần tính là:

\(S = S' - {S_{OBC}} = \pi - \frac{{3\sqrt 3 }}{4} \approx 1,84\) (cm2).

Lời giải

Cho tam giác đều ABC có độ dài cạnh bằng 4 cm. Tính bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC. (ảnh 1)

Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác đều ABC. Ta có \(R = \frac{{\sqrt 3 }}{3}.4 = \frac{{4\sqrt 3 }}{3}\) (cm), \(r = \frac{{\sqrt 3 }}{6}.4 = \frac{{2\sqrt 3 }}{3}\) (cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP